This repository has been archived by the owner on May 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
executable file
·222 lines (163 loc) · 6.8 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
"""Train a model to recognize digits on allometry sheets."""
import argparse
import logging
import textwrap
from datetime import date
from os import makedirs
from pathlib import Path
from random import randint
import numpy as np
import torch
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
from allometry.model_util import MODELS, get_model, continue_training
from allometry.training_data import TrainingData
from allometry.util import Score, finished, started
def train(args):
"""Train the neural net."""
make_dirs(args)
name = f'{args.model_arch}_{date.today().isoformat()}'
name = f'{name}_{args.suffix}' if args.suffix else name
model = get_model(args.model_arch)
epoch_start = continue_training(args.model_dir, args.trained_model, model)
epoch_end = epoch_start + args.epochs
device = torch.device(args.device)
model.to(device)
criterion = nn.CrossEntropyLoss()
train_loader, score_loader = get_loaders(args)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
best_score = Score()
best_loss = Score()
for epoch in range(epoch_start, epoch_end):
np.random.seed(args.seed + epoch)
score = Score()
train_batches(model, device, criterion, train_loader, optimizer, score)
score_batches(model, device, criterion, score_loader, score)
log_score(score, best_score, best_loss, epoch)
best_score, best_loss = save_state(
model, args.model_dir, name, epoch, score, best_score, best_loss)
def train_batches(model, device, criterion, loader, optimizer, score):
"""Run the training phase of the epoch."""
model.train()
for x, y in loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
pred = model(x)
loss = criterion(pred, y)
score.train_losses.append(loss.item())
loss.backward()
optimizer.step()
def score_batches(model, device, criterion, loader, score):
"""Run the validating phase of the epoch."""
model.eval()
for x, y in loader:
x, y = x.to(device), y.to(device)
with torch.set_grad_enabled(False):
pred = model(x)
loss = criterion(pred, y)
_, idx = torch.max(pred.data, 1)
score.score_losses.append(loss.item())
score.total.append(y.size(0))
score.correct_1.append((idx == y).sum().item())
def log_score(score, best_score, best_loss, epoch):
"""Clean up after the scoring epoch."""
acc_flag = '*' if score.better_than(best_score) else ''
score_flag = '*' if score.avg_score_loss < best_loss.avg_score_loss else ' '
logging.info(f'Epoch: {epoch:3d} Average loss '
f'(train: {score.avg_train_loss:0.8f},'
f' score: {score.avg_score_loss:0.8f}) {score_flag} '
f'Accuracy: {score.top_1:8.4f} % {acc_flag}')
def save_state(model, model_dir, name, epoch, score, best_score, best_loss):
"""Save the model if the current score is better than the best one."""
model.state_dict()['epoch'] = epoch
if score.better_than(best_score):
path = model_dir / f'{name}.pth'
torch.save(model.state_dict(), path)
best_score = score
if score.avg_score_loss < best_loss.avg_score_loss:
path = model_dir / f'{name}_loss.pth'
torch.save(model.state_dict(), path)
best_loss = score
return best_score, best_loss
def get_loaders(args):
"""Get the data loaders."""
train_dataset = TrainingData(args.train_size)
score_dataset = TrainingData(args.score_size)
train_loader = DataLoader(
train_dataset,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.workers,
worker_init_fn=lambda w: np.random.seed(np.random.get_state()[1][0] + w),
)
score_loader = DataLoader(
score_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
worker_init_fn=lambda w: np.random.seed(np.random.get_state()[1][0] + w),
)
return train_loader, score_loader
def make_dirs(args):
"""Create output directories."""
if args.model_dir:
makedirs(args.model_dir, exist_ok=True)
# if args.runs_dir:
# makedirs(args.runs_dir, exist_ok=True)
def parse_args():
"""Process command-line arguments."""
description = """Train a model to recognize characters on allometry sheets."""
arg_parser = argparse.ArgumentParser(
description=textwrap.dedent(description),
fromfile_prefix_chars='@')
arg_parser.add_argument(
'--train-size', type=int, default=4096,
help="""Train this many characters per epoch. (default: %(default)s)""")
arg_parser.add_argument(
'--score-size', type=int, default=512,
help="""Train this many characters per epoch. (default: %(default)s)""")
arg_parser.add_argument(
'--model-dir', type=Path, help="""Save models to this directory.""")
arg_parser.add_argument(
'--trained-model',
help="""Load this model state to continue training the model. The file must
be in the --model-dir.""")
arg_parser.add_argument(
'--model-arch', default='resnet50', choices=list(MODELS.keys()),
help="""What model architecture to use. (default: %(default)s)""")
arg_parser.add_argument(
'--suffix',
help="""Add this to the saved model name to differentiate it from
other runs.""")
default = 'cuda:0' if torch.cuda.is_available() else 'cpu'
arg_parser.add_argument(
'--device', default=default,
help="""Which GPU or CPU to use. Options are 'cpu', 'cuda:0', 'cuda:1' etc.
(default: %(default)s)""")
arg_parser.add_argument(
'--epochs', type=int, default=100,
help="""How many epochs to train. (default: %(default)s)""")
arg_parser.add_argument(
'--learning-rate', type=float, default=0.0001,
help="""Initial learning rate. (default: %(default)s)""")
arg_parser.add_argument(
'--batch-size', type=int, default=16,
help="""Input batch size. (default: %(default)s)""")
arg_parser.add_argument(
'--workers', type=int, default=4,
help="""Number of workers for loading data. (default: %(default)s)""")
arg_parser.add_argument(
'--seed', type=int, help="""Create a random seed.""")
# arg_parser.add_argument(
# '--runs-dir', help="""Save tensor board logs to this directory.""")
args = arg_parser.parse_args()
# Wee need something for the data loaders
args.seed = args.seed if args.seed is not None else randint(0, 4_000_000_000)
return args
if __name__ == '__main__':
started()
ARGS = parse_args()
train(ARGS)
finished()