-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoy_experiment.py
250 lines (212 loc) · 10.6 KB
/
toy_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import os
import random
import time
import yaml
import gpytorch
import matplotlib.pyplot as plt
import torch
from torch.distributions import MultivariateNormal
from dbo.af import PlainUCB
from dbo.gp import GPModel, LogProbMean
from dbo.sampling import MCMCSampler, density_estimator, UnnormalisedDistribution
import dbo.toy
from dbo.util import cd, make_grid, save_object, cov
from dbo.diagnostics import sample_divergence, gs_divergence, evidence_lower_bound
def plot_estimates(model, lb, ub, observations=None, **kwargs):
extent = [lb, ub, lb, ub]
n_points = int(model.shape[0]**0.5)
plt.imshow(model.view(n_points, n_points).t(), extent=extent, origin='lower', **kwargs)
if observations is not None:
plt.plot(observations[:, 0].cpu(), observations[:, 1].cpu(), 'k+')
plt.axis(extent)
plt.colorbar()
def run_experiment(dimensionality, n_it, n_samples_per_it, n_chains, noise_level, objective_class,
output_directory, n_test=None, n_burn=400, delta=0.1, show_plots=False):
problem_prior = MultivariateNormal(loc=torch.zeros(dimensionality), scale_tril=torch.eye(dimensionality))
kernel = gpytorch.kernels.RBFKernel()
if objective_class == 'CircularObjective':
kernel.lengthscale = .5
else:
kernel.lengthscale = 0.5*dimensionality**0.5
kernel.eval()
kernel.requires_grad_(False)
if n_test is None:
if objective_class == 'CircularObjective':
n_test = 10000
else:
if dimensionality <= 4:
n_test = 1000
else:
n_test = dimensionality*2000
gp_model = GPModel(gpytorch.kernels.ScaleKernel(kernel), mean_module=LogProbMean(problem_prior))
if objective_class == 'RKHSObjective':
objective = dbo.toy.RKHSObjective(n_dim=dimensionality, kernel=kernel, prior=problem_prior,
n_points=10*dimensionality**2)
else:
objective = getattr(dbo.toy, objective_class)(n_dim=dimensionality, kernel=kernel,
prior=problem_prior)
gp_model.covar_module.outputscale = 1
if isinstance(objective, dbo.toy.RKHSObjective):
f_norm = objective.norm
else:
# f_norm = objective(problem_prior.sample([n_test])).abs().max()
# f_norm = estimate_rkhs_norm(objective, problem_prior.sample([n_test]), gp_model.covar_module)
f_norm = 3
if isinstance(objective, dbo.toy.MixtureObjective):
true_posterior = objective.posterior(problem_prior)
objective_samples = true_posterior.sample([n_test])
else:
objective_sampler = MCMCSampler(objective, problem_prior, n_chains=1, sampler='EMCEE')
objective_samples = objective_sampler.sample(n_test, n_burn=n_burn)
true_posterior = density_estimator(objective_samples)
print(f"Objective moments:\nMean: {objective_samples.mean(dim=0)}\nCovariance:{cov(objective_samples)}")
noise_sd = f_norm * noise_level
if objective_class == 'RKHSObjective':
gp_model.likelihood.noise = 1e-2
else:
gp_model.likelihood.noise = 1e-4 # torch.tensor(noise_sd ** 2)
acq_fun = PlainUCB(gp_model, f_bound=f_norm, sigma_out=noise_sd, delta=delta)
af_sampler = MCMCSampler(acq_fun, problem_prior, n_chains=n_chains, use_jit=True, sampler='EMCEE')
n_points = 100
x_lb = problem_prior.mean.mean().item() - 3 * problem_prior.variance.mean().sqrt().item()
x_ub = problem_prior.mean.mean().item() + 3 * problem_prior.variance.mean().sqrt().item()
f_test = None
x_test = None
if dimensionality == 2:
x_test = make_grid(x_lb, x_ub, (x_ub - x_lb) / n_points)
f_test = objective(x_test) + problem_prior.log_prob(x_test)
divergences = torch.zeros(n_it)
gs_divergences = torch.zeros(n_it)
regret_bound = torch.zeros(n_it)
elbo = torch.zeros(n_it)
# BO loop
for t in range(n_it):
print(f"Sampling... {t + 1}/{n_it}")
x_t = af_sampler.sample(n_samples_per_it, factor=100, n_burn=n_burn).view(n_samples_per_it, dimensionality)
y_t = objective(x_t).view([n_samples_per_it]) + torch.randn([n_samples_per_it]) * noise_sd
# Debug
print("Computing divergence...")
test_samples = af_sampler.last_samples
elbo[t] = evidence_lower_bound(UnnormalisedDistribution(objective, problem_prior).log_prob, test_samples)
gs_divergences[t] = gs_divergence(objective_samples, test_samples)
divergences[t] = sample_divergence(objective_samples, test_samples)
regret_bound[t] = 2 * acq_fun.beta_t * gp_model(test_samples).variance.sqrt().mean()
print(f"Divergence/bound: {divergences[t]} < {regret_bound[t]}")
print(f"gsKL divergence: {gs_divergences[t]}")
print(f"ELBO: {elbo[t]}")
if dimensionality == 2 and show_plots:
plt.figure(figsize=(4, 8))
af_test = af_sampler.un_dist.log_prob(x_test).cpu()
plt.subplot(211)
plot_estimates(f_test, x_lb, x_ub, vmin=-20, vmax=0)
plt.subplot(212)
plot_estimates(af_test, x_lb, x_ub, vmin=None, vmax=None)
plt.plot(test_samples[:, 0], test_samples[:, 1], 'm+')
plt.plot(x_t[:, 0].cpu(), x_t[:, 1].cpu(), 'k+', ms=10, mew=2)
plt.show()
# Update models
gp_model.update(x_t, y_t)
acq_fun.update()
gp_sampler = MCMCSampler(gp_model.mean, problem_prior, n_chains=n_chains, use_jit=True, sampler='EMCEE')
final_samples = gp_sampler.sample(n_test, n_burn=n_burn)
final_de = density_estimator(final_samples)
if dimensionality == 2 and show_plots:
m_test = final_de.log_prob(x_test).exp().cpu()
r_test = true_posterior.log_prob(x_test).exp().cpu()
v_max = max(m_test.max().item(), r_test.max().item())
plt.figure(figsize=(4, 7))
plt.subplot(211)
plot_estimates(r_test, x_lb, x_ub, vmin=0, vmax=v_max)
plt.title("Target density")
plt.subplot(212)
plot_estimates(m_test, x_lb, x_ub, vmin=0, vmax=v_max)
plt.title("Model density")
plt.show()
t_steps = torch.arange(n_it).cpu() + 1
plt.figure(figsize=(4, 3))
plt.plot(t_steps * n_samples_per_it, regret_bound.cumsum(-1).cpu() / t_steps, 'b-', label="Regret bound")
plt.plot(t_steps * n_samples_per_it, divergences.cumsum(-1).cpu() / t_steps, 'k-', label="Averaged KL")
plt.plot(t_steps * n_samples_per_it, divergences.cpu(), 'k+', label="KL divergence")
plt.plot(t_steps * n_samples_per_it, gs_divergences.cumsum(-1).cpu() / t_steps, 'g-', label="Averaged gsKL")
plt.plot(t_steps * n_samples_per_it, gs_divergences.cpu(), 'g+', label="gsKL divergence")
plt.plot(t_steps * n_samples_per_it, elbo.cumsum(-1).cpu() / t_steps, 'r-', label="Averaged ELBO")
plt.plot(t_steps * n_samples_per_it, elbo.cpu(), 'r+', label="ELBO")
plt.xlabel("Evaluations")
plt.legend()
plt.tight_layout()
with cd(output_directory):
plt.savefig("result.png", dpi=300)
torch.save(regret_bound, "dbo-bounds.pth")
torch.save(divergences, "dbo-divergences.pth")
torch.save(gs_divergences, "dbo-gs_divergences.pth")
torch.save(elbo, "dbo-elbo.pth")
save_object("dbo-gp.pkl", gp_model)
save_object("dbo-objective.pkl", objective)
if show_plots:
plt.show()
def configure_matplotlib(small_size=10, medium_size=12, bigger_size=14):
plt.rc('font', size=small_size) # controls default text sizes
plt.rc('axes', titlesize=small_size) # fontsize of the axes title
plt.rc('axes', labelsize=medium_size) # fontsize of the x and y labels
plt.rc('xtick', labelsize=small_size) # fontsize of the tick labels
plt.rc('ytick', labelsize=small_size) # fontsize of the tick labels
plt.rc('legend', fontsize=small_size) # legend fontsize
plt.rc('figure', titlesize=bigger_size) # fontsize of the figure title
plt.rc('image', cmap='jet')
def main(args):
if args.output_directory is None:
args.output_directory = os.path.join("experiments", time.strftime("toy-%Y-%m-%d-%H%M%S"))
if not os.path.exists(args.output_directory):
os.makedirs(args.output_directory)
if args.seed is None:
seed = random.SystemRandom().getrandbits(32)
else:
seed = args.seed
torch.manual_seed(seed)
output_directory = args.output_directory
with cd(output_directory):
with open("toy-seed.dat", "w") as f:
f.write("{}\n".format(seed))
with open("toy-args.yaml", "w") as f:
yaml.dump(args, f)
dim = args.dimensionality
n_mcmc_chains = 1
n_samples_per_iteration = args.n_samples_per_iteration
n_iterations = args.n_iterations
n_repeats = args.n_repeats
objective_type = args.objective
delta = 0.2
if objective_type == 'RKHSObjective':
log_lik_noise_level = 0.01
else:
log_lik_noise_level = 1e-6
if dim == 2:
configure_matplotlib()
for r in range(n_repeats):
if n_repeats > 1:
print("##########################################")
print(f"Running trial {r+1} out of {n_repeats}...")
print("##########################################\n\n")
run_dir = os.path.join(output_directory, f"run-{r+1:02}")
if not os.path.exists(run_dir):
os.makedirs(run_dir)
else:
run_dir = output_directory
run_experiment(dim, n_iterations, n_samples_per_iteration, n_mcmc_chains, log_lik_noise_level,
objective_type, output_directory=run_dir, delta=delta, show_plots=args.show_plots)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Toy experiment with KL-UCB")
parser.add_argument("-r", "--n-repeats", help="Number of repetitions", type=int, default=1)
parser.add_argument("-t", "--n-iterations", help="Number of iterations", type=int, default=10)
parser.add_argument("-d", "--dimensionality", help="Dimensionality of the problem", type=int, default=2)
parser.add_argument("-o", "--output-directory", help="Output directory", default=None)
parser.add_argument("-n", "--n-samples-per-iteration", help="Number of samples to evaluate per iteration",
type=int, default=10)
parser.add_argument("-s", "--seed", help="Random number generator seed", default=None, type=int)
parser.add_argument("-f", "--objective", help="Objective type ['RKHSObjective', 'MixtureObjective']",
default='RKHSObjective')
parser.add_argument("-p", "--show-plots", help="Show intermediate plots", action='store_true')
cl_args = parser.parse_args()
main(cl_args)
print("Done")