-
Notifications
You must be signed in to change notification settings - Fork 91
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
288 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
import numpy as np | ||
from pathlib import Path | ||
from gdl.datasets.ImageDatasetHelpers import bbox2point, bbpoint_warp | ||
import skvideo | ||
import types | ||
|
||
|
||
def align_face(image, landmarks, landmark_type, scale_adjustment, target_size_height, target_size_width=None,): | ||
""" | ||
Returns an image with the face aligned to the center of the image. | ||
:param image: The full resolution image in which to align the face. | ||
:param landmarks: The landmarks of the face in the image (in the original image coordinates). | ||
:param landmark_type: The type of landmarks. Such as 'kpt68' or 'bbox' or 'mediapipe'. | ||
:param scale_adjustment: The scale adjustment to apply to the image. | ||
:param target_size_height: The height of the output image. | ||
:param target_size_width: The width of the output image. If not provided, it is assumed to be the same as target_size_height. | ||
:return: The aligned face image. The image will be in range [0,1]. | ||
""" | ||
# landmarks_for_alignment = "mediapipe" | ||
left = landmarks[:,0].min() | ||
top = landmarks[:,1].min() | ||
right = landmarks[:,0].max() | ||
bottom = landmarks[:,1].max() | ||
|
||
old_size, center = bbox2point(left, right, top, bottom, type=landmark_type) | ||
size = (old_size * scale_adjustment).astype(np.int32) | ||
|
||
img_warped, lmk_warped = bbpoint_warp(image, center, size, target_size_height, target_size_width, landmarks=landmarks) | ||
|
||
return img_warped | ||
|
||
|
||
def align_video(video, centers, sizes, landmarks, target_size_height, target_size_width=None, ): | ||
""" | ||
Returns a video with the face aligned to the center of the image. | ||
:param video: The full resolution video in which to align the face. | ||
:param landmarks: The landmarks of the face in the video (in the original video coordinates). | ||
:param target_size_height: The height of the output video. | ||
:param target_size_width: The width of the output video. If not provided, it is assumed to be the same as target_size_height. | ||
:return: The aligned face video. The video will be in range [0,1]. | ||
""" | ||
if isinstance(video, (str, Path)): | ||
video = skvideo.io.vread(video) | ||
elif isinstance(video, (np.ndarray, types.GeneratorType)): | ||
pass | ||
else: | ||
raise ValueError("video must be a string, Path, or numpy array") | ||
|
||
aligned_video = [] | ||
warped_landmarks = [] | ||
if isinstance(video, np.ndarray): | ||
for i in range(len(centers)): | ||
img_warped, lmk_warped = bbpoint_warp(video[i], centers[i], sizes[i], | ||
target_size_height=target_size_height, target_size_width=target_size_width, | ||
landmarks=landmarks[i]) | ||
aligned_video.append(img_warped) | ||
warped_landmarks += [lmk_warped] | ||
|
||
elif isinstance(video, types.GeneratorType): | ||
for i, frame in enumerate(video): | ||
img_warped, lmk_warped = bbpoint_warp(frame, centers[i], sizes[i], | ||
target_size_height=target_size_height, target_size_width=target_size_width, | ||
landmarks=landmarks[i]) | ||
aligned_video.append(img_warped) | ||
warped_landmarks += [lmk_warped] | ||
|
||
aligned_video = np.stack(aligned_video, axis=0) | ||
return aligned_video, warped_landmarks | ||
|
||
|
||
def align_and_save_video(video, out_video_path, centers, sizes, landmarks, target_size_height, target_size_width=None, output_dict=None): | ||
""" | ||
Returns a video with the face aligned to the center of the image. | ||
:param video: The full resolution video in which to align the face. | ||
:param landmarks: The landmarks of the face in the video (in the original video coordinates). | ||
:param target_size_height: The height of the output video. | ||
:param target_size_width: The width of the output video. If not provided, it is assumed to be the same as target_size_height. | ||
:return: The aligned face video. The video will be in range [0,1]. | ||
""" | ||
if isinstance(video, (str, Path)): | ||
video = skvideo.io.vread(video) | ||
elif isinstance(video, (np.ndarray, types.GeneratorType)): | ||
pass | ||
else: | ||
raise ValueError("video must be a string, Path, or numpy array") | ||
|
||
writer = skvideo.io.FFmpegWriter(str(out_video_path), outputdict=output_dict) | ||
warped_landmarks = [] | ||
if isinstance(video, np.ndarray): | ||
for i in range(len(centers)): | ||
img_warped, lmk_warped = bbpoint_warp(video[i], centers[i], sizes[i], | ||
target_size_height=target_size_height, target_size_width=target_size_width, | ||
landmarks=landmarks[i]) | ||
img_warped = (img_warped * 255).astype(np.uint8) | ||
writer.writeFrame(img_warped) | ||
warped_landmarks += [lmk_warped] | ||
|
||
elif isinstance(video, types.GeneratorType): | ||
for i, frame in enumerate(video): | ||
img_warped, lmk_warped = bbpoint_warp(frame, centers[i], sizes[i], | ||
target_size_height=target_size_height, target_size_width=target_size_width, | ||
landmarks=landmarks[i]) | ||
img_warped = (img_warped * 255).astype(np.uint8) | ||
writer.writeFrame(img_warped) | ||
warped_landmarks += [lmk_warped] | ||
writer.close() | ||
|
||
return warped_landmarks |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
""" | ||
Author: Radek Danecek | ||
Copyright (c) 2022, Radek Danecek | ||
All rights reserved. | ||
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | ||
# holder of all proprietary rights on this computer program. | ||
# Using this computer program means that you agree to the terms | ||
# in the LICENSE file included with this software distribution. | ||
# Any use not explicitly granted by the LICENSE is prohibited. | ||
# | ||
# Copyright©2022 Max-Planck-Gesellschaft zur Förderung | ||
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | ||
# for Intelligent Systems. All rights reserved. | ||
# | ||
# For comments or questions, please email us at emoca@tue.mpg.de | ||
# For commercial licensing contact, please contact ps-license@tuebingen.mpg.de | ||
""" | ||
|
||
|
||
import numpy as np | ||
import torch | ||
from PIL import Image | ||
from skimage.io import imread | ||
from torchvision.transforms import ToTensor | ||
|
||
from gdl.utils.FaceDetector import load_landmark | ||
from gdl.datasets.FaceAlignmentTools import align_face | ||
|
||
from skvideo.io import vread, vreader | ||
from types import GeneratorType | ||
import pickle as pkl | ||
|
||
class VideoFaceDetectionDataset(torch.utils.data.Dataset): | ||
|
||
def __init__(self, video_name, landmark_path, image_transforms=None, | ||
align_landmarks=False, vid_read=None, output_im_range=None, | ||
scale_adjustment=1.25, | ||
target_size_height=256, | ||
target_size_width=256, | ||
): | ||
super().__init__() | ||
self.video_name = video_name | ||
self.landmark_path = landmark_path / "landmarks_original.pkl" | ||
# if landmark_list is not None and len(lanmark_file_name) != len(image_list): | ||
# raise RuntimeError("There must be a landmark for every image") | ||
self.image_transforms = image_transforms | ||
self.vid_read = vid_read or 'skvreader' # 'skvread' | ||
self.prev_index = -1 | ||
|
||
self.scale_adjustment=scale_adjustment | ||
self.target_size_height=target_size_height | ||
self.target_size_width=target_size_width | ||
|
||
self.video_frames = None | ||
if self.vid_read == "skvread": | ||
self.video_frames = vread(str(self.video_name)) | ||
elif self.vid_read == "skvreader": | ||
self.video_frames = vreader(str(self.video_name)) | ||
|
||
with open(self.landmark_path, "rb") as f: | ||
self.landmark_list = pkl.load(f) | ||
|
||
with open(landmark_path / "landmark_types.pkl", "rb") as f: | ||
self.landmark_types = pkl.load(f) | ||
|
||
self.total_len = 0 | ||
self.frame_map = {} # detection index to frame map | ||
self.index_for_frame_map = {} # detection index to frame map | ||
for i in range(len(self.landmark_list)): | ||
for j in range(len(self.landmark_list[i])): | ||
self.frame_map[self.total_len + j] = i | ||
self.index_for_frame_map[self.total_len + j] = j | ||
self.total_len += len(self.landmark_list[i]) | ||
|
||
self.output_im_range = output_im_range | ||
|
||
|
||
def __getitem__(self, index): | ||
# if index < len(self.image_list): | ||
# x = self.mnist_data[index] | ||
# raise IndexError("Out of bounds") | ||
if index != self.prev_index+1 and self.vid_read != 'skvread': | ||
raise RuntimeError("This dataset is meant to be accessed in ordered way only (and with 0 or 1 workers)") | ||
|
||
frame_index = self.frame_map[index] | ||
detection_in_frame_index = self.index_for_frame_map[index] | ||
landmark = self.landmark_list[frame_index][detection_in_frame_index] | ||
landmark_type = self.landmark_types[frame_index][detection_in_frame_index] | ||
|
||
if isinstance(self.video_frames, np.ndarray): | ||
img = self.video_frames[frame_index, ...] | ||
elif isinstance(self.video_frames, GeneratorType): | ||
img = next(self.video_frames) | ||
else: | ||
raise NotImplementedError() | ||
|
||
# try: | ||
# if self.vid_read == 'skvread': | ||
# img = vread(self.image_list[index]) | ||
# img = img.transpose([2, 0, 1]).astype(np.float32) | ||
# img_torch = torch.from_numpy(img) | ||
# path = str(self.image_list[index]) | ||
# elif self.vid_read == 'pil': | ||
# img = Image.open(self.image_list[index]) | ||
# img_torch = ToTensor()(img) | ||
# path = str(self.image_list[index]) | ||
# # path = f"{index:05d}" | ||
# else: | ||
# raise ValueError(f"Invalid image reading method {self.im_read}") | ||
# except Exception as e: | ||
# print(f"Failed to read '{self.image_list[index]}'. File is probably corrupted. Rerun data processing") | ||
# raise e | ||
|
||
# crop out the face | ||
img = align_face(img, landmark, landmark_type, scale_adjustment=1.25, target_size_height=256, target_size_width=256,) | ||
if self.output_im_range == 255: | ||
img = img * 255.0 | ||
img = img.astype(np.float32) | ||
img_torch = ToTensor()(img) | ||
|
||
# # plot img with pyplot | ||
# import matplotlib.pyplot as plt | ||
# plt.figure() | ||
# plt.imshow(img) | ||
# plt.show() | ||
# # plot image with plotly | ||
# import plotly.graph_objects as go | ||
# fig = go.Figure(data=go.Image(z=img*255.,)) | ||
# fig.show() | ||
|
||
|
||
if self.image_transforms is not None: | ||
img_torch = self.image_transforms(img_torch) | ||
|
||
batch = {"image" : img_torch, | ||
# "path" : path | ||
} | ||
|
||
self.prev_index += 1 | ||
return batch | ||
|
||
def __len__(self): | ||
return self.total_len |