-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathser334_unit10_exercise_sample.lyx
719 lines (530 loc) · 13 KB
/
ser334_unit10_exercise_sample.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\branch blank
\selected 1
\filename_suffix 0
\color #faf0e6
\end_branch
\branch soln
\selected 0
\filename_suffix 0
\color #faf0e6
\end_branch
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2.54cm
\topmargin 2.54cm
\rightmargin 2.54cm
\bottommargin 2.54cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\noindent
Arizona State University
\begin_inset space \hfill{}
\end_inset
SER334: Operating Systems & System Programming
\end_layout
\begin_layout Standard
\noindent
Lecturer Acuña (7), UGTA Bahremand (2)
\begin_inset space \hfill{}
\end_inset
Revised 4/12/2022
\end_layout
\begin_layout Standard
\noindent
\begin_inset CommandInset line
LatexCommand rule
offset "0.5ex"
width "100col%"
height "1pt"
\end_inset
\end_layout
\begin_layout Standard
\size huge
Unit 10 Sample Problems - Main Memory
\begin_inset Branch soln
inverted 0
status open
\begin_layout Standard
\size huge
(SOLN)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset VSpace bigskip
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $ $
\end_inset
\end_layout
\begin_layout Standard
In this exercise, we will review the concepts of main memory.
\end_layout
\begin_layout Itemize
Length: 50 minutes with discussion.
\end_layout
\begin_layout Itemize
Questions: Q1, Q3-Q6, Q9.
(optional: Q2, Q7, Q8)
\end_layout
\begin_layout Standard
\begin_inset VSpace 0.5cm
\end_inset
\end_layout
\begin_layout Section
\series bold
\size larger
Background
\end_layout
\begin_layout Enumerate
[Acuña] Assume that a memory management system only has a limit register,
not a base register.
Would it still be possible to create at least a somewhat secure system?
If so explain, including limitations.
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Acuña]
\end_layout
\begin_layout Standard
Yes, but it would be tricky.
We would effectively only have one side of a bound for a process.
So instead of a process between defined as between addresses X and Y, we
instead could just check for the process using addresses under X.
We could imagine ordering several programs in memory: P0, P1, P2, P3.
Here, P0 could access only itself.
P1 could access P1 and P0.
P2 could acces P0, P1, and P2.
P3 could access all four programs.
In such a set up P0 might the least trusted program while P3 would be the
most trusted.
\end_layout
\begin_layout Standard
\begin_inset VSpace 2cm
\end_inset
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Enumerate
[Bahremand] What makes logical memory feel more versatile than physical
memory?
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Bahremand]
\end_layout
\begin_layout Standard
With logical memory, an application can be given a virtual arbitrary address
space, this is a contiguous block of memory.
This address is mapped, and can be paged anywhere in physical or even secondary
storage memory.
If the memory has been swapped out, a page fault allows for the memory
to be pulled back.
This allows memory to overcome the challenge of having fixed memory locations
for code.
With logical memory, multiple physical copies can exist in the address
space of several processes at once.
\end_layout
\begin_layout Standard
\begin_inset VSpace 1cm
\end_inset
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Enumerate
[Acuña] Consider the following scenario: you have spent several years developing
an indie video game but have run out of funding, and have decided to release
what you have completed to the public.
Unfortunately your source code is rather messy and you only want to release
binaries.
Assume you want to maximize the lifetime of the game and who gets to play.
\end_layout
\begin_deeper
\begin_layout Standard
Would it be more appropriate to use a static or dynamic linking approach
when doing the release build of your software? Explain.
\end_layout
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Acuña]
\end_layout
\begin_layout Standard
A dynamic approach would be better.
External libraries would make it easier for a 3rd party (e.g., diehard fans
of the game) to replace components.
For example, if the game relied on a graphics API that was being continually
updated, then the fans could drop new DLLs into the game's folder and the
new version of the API (improved since the game's release) would be used.
\end_layout
\begin_layout Standard
\begin_inset VSpace 2cm
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Swapping
\end_layout
\end_deeper
\begin_layout Enumerate
[Bahremand] A change on the CPU from running one process (and its state)
to another is known as a
\emph on
context switch
\emph default
.
With respect to processes, how is this different than
\emph on
swappin
\emph default
g?
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Bahremand]
\end_layout
\begin_layout Standard
Swapping deals with memory, while context switches deal with the time requiremen
t for moving a process onto or from the CPU.
To go into further detail, swapping deals with saving the state of some
physical memory to secondary storage.
Context switches take the state of a process from registers/cache and saves
it into main (physical) memory.
\end_layout
\begin_layout Standard
\begin_inset VSpace 1cm
\end_inset
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Enumerate
[Acuña] On a system with lots of RAM available (32GB+), would it be completely
safe to turn of process swapping? Explain.
Assume the system is not loaded with programs with large memory footprints
(e.g., VMs).
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Acuña]
\end_layout
\begin_layout Standard
Probably not.
The issue is that even if we have plenty of RAM, systems still suffer from
memory leaks.
Over time, a memory leak can consume all physical RAM, and cause the system
to fail.
With swapping, the system will have a longer up time since it can swap
over data (even if from leaks) to the hard drive, keeping the physical
RAM usable by actual programs.
\end_layout
\begin_layout Standard
\begin_inset VSpace 2cm
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Contiguous Memory Allocation
\end_layout
\end_deeper
\begin_layout Enumerate
[Acuña] In a contiguous memory allocation system, would it make sense to
initialize and place processes right next to one another to reduce fragmentatio
n? Explain.
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Acuña]
\end_layout
\begin_layout Standard
No.
The issue is that we can never be 100% sure how much memory a program will
take.
If we insist on placing programs back to back, then if a program requires
any more memory (even a single byte), we will be obligated to move it to
a new location.
Sadly, moves are costly.
If we leave gaps between processes, we have some hope of resizing.
\end_layout
\begin_layout Standard
\begin_inset VSpace 2cm
\end_inset
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Enumerate
[Acuña] Consider the following scenario: you select a thousand text documents
and open them with Notepad.
The OS begins allocating memory for a thousand instances of Notepad.
Which hole selection scheme (first/best/worse fit) would be fastest in
term of finding/preparing a hole? Assume that the machine has just been
rebooted and that there is no page sharing.
(Hint: Notepad is a reasonably small application.)
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Acuña]
\end_layout
\begin_layout Standard
Since the system has just been started, there is likely to be one large
hole, and only several smaller ones.
If we choose worse fit, then it will be easier to find the hole but each
time we will have to divide it.
If we choose best fit, it will be little longer to find a hole but not
bad since there are few to pick from, and we may not have to always split
holes.
If we choose first fit will quickly degrade to worse fit.
Best fit is likely to give us a small performance increase over the other
two methods.
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Segmentation
\end_layout
\end_deeper
\begin_layout Enumerate
[Acuña] Would a segmentation memory system have a harder (slower) time dealing
with a program written in a procedural language (like C), or an object-oriented
language like C++?
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Acuña]
\end_layout
\begin_layout Standard
It would be slower in an OOP language.
In an OOP language functions tend to be tightly coupled (meaning many need
to be loaded at the same time) since they are combined together in a class,
all sharing the same class level data.
In a procedural language, functions are more likely to be independently,
meaning the program can be divided into smaller pieces.
\end_layout
\begin_layout Standard
\begin_inset VSpace 2cm
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Paging
\end_layout
\end_deeper
\begin_layout Enumerate
[Acuña] How does paging make better use of memory than a segmentation approach?
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Branch blank
inverted 0
status collapsed
\begin_layout Standard
\begin_inset VSpace 4cm
\end_inset
\end_layout
\end_inset
\begin_inset Branch soln
inverted 0
status collapsed
\begin_layout Standard
\series bold
Ans: [Acuña]
\end_layout
\begin_layout Standard
In paging, each page/frame is the same size.
This is useful because any page can be placed into any frame.
Thus, external fragmentation all but disappears.
\end_layout
\begin_layout Standard
\begin_inset VSpace 2cm
\end_inset
\end_layout
\end_inset
\end_layout
\end_deeper
\end_body
\end_document