diff --git a/docs/articles/CO69.html b/docs/articles/CO69.html index f89106aa..ed42e027 100644 --- a/docs/articles/CO69.html +++ b/docs/articles/CO69.html @@ -548,7 +548,7 @@

Measures of spatial autocorrelation Prop_stdR <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=lw_std, randomisation=TRUE)) })
##    user  system elapsed 
-##    0.12    0.00    0.12
+## 0.112 0.001 0.113
 res <- sapply(c("MoranN", "MoranR", "GearyN", "GearyR", "Prop_unstdN", "Prop_unstdR", "Prop_stdN", "Prop_stdR"), function(x) sapply(get(x), "[[", "statistic"))
 rownames(res) <- vars
@@ -780,7 +780,7 @@ 

Simulating measures of s Prop_stdSad <- lapply(lm_objs, function(x) lm.morantest.sad(x, listw=lw_std)) })

##    user  system elapsed 
-##   0.066   0.000   0.066
+## 0.065 0.000 0.066
 res <- sapply(c("MoranSad", "Prop_unstdSad", "Prop_stdSad"), function(x) sapply(get(x), "[[", "statistic"))
 rownames(res) <- vars
@@ -843,7 +843,7 @@

Simulating measures of s Prop_stdEx <- lapply(lm_objs, function(x) lm.morantest.exact(x, listw=lw_std)) })
##    user  system elapsed 
-##   0.082   0.000   0.082
+## 0.083 0.000 0.084
 res <- sapply(c("MoranEx", "Prop_unstdEx", "Prop_stdEx"), function(x) sapply(get(x), "[[", "statistic"))
 rownames(res) <- vars
diff --git a/docs/articles/nb_sf.html b/docs/articles/nb_sf.html index 7eda3152..6a4a79f7 100644 --- a/docs/articles/nb_sf.html +++ b/docs/articles/nb_sf.html @@ -230,7 +230,7 @@

Contiguity neighbours for pol eps <- sqrt(.Machine$double.eps) system.time(for(i in 1:reps) NY8_sf_1_nb <- poly2nb(NY8_sf, queen=TRUE, snap=eps))/reps
##    user  system elapsed 
-##  0.1853  0.0094  0.1960
+## 0.2036 0.0089 0.2136

Using spatial indices to check intersection of polygons is much faster than the legacy method in poly2nb. From spdep 1.1-7, use is made of GEOS through sf to find candidate @@ -406,12 +406,12 @@

K-nearest neighbours
 system.time(for (i in 1:reps) suppressWarnings(NY88_nb_sf <- knn2nb(knearneigh(NY8_ct_sf, k=1))))/reps
##    user  system elapsed 
-##  0.0271  0.0013  0.0286
+## 0.0232 0.0007 0.0240

Legacy code may be used omitting the kd-tree:

 system.time(for (i in 1:reps) suppressWarnings(NY89_nb_sf <- knn2nb(knearneigh(NY8_ct_sf, k=1, use_kd_tree=FALSE))))/reps
##    user  system elapsed 
-##  0.0263  0.0019  0.0284
+## 0.0233 0.0012 0.0246

Distance neighbours @@ -430,7 +430,7 @@

Distance neighbours
 system.time(for (i in 1:reps) suppressWarnings(NY810_nb <- dnearneigh(NY8_ct_sf, d1=0, d2=0.75*max_1nn)))/reps

##    user  system elapsed 
-##  0.0619  0.0013  0.0634
+## 0.0606 0.0012 0.0621

By default, the function uses dbscan::frNN() to build a kd-tree in 2D or 3D which is then used to find distance neighbours. For small n, the argument use_kd_tree=FALSE may speed up @@ -440,7 +440,7 @@

Distance neighbours
 system.time(for (i in 1:reps) suppressWarnings(NY811_nb <- dnearneigh(NY8_ct_sf, d1=0, d2=0.75*max_1nn, use_kd_tree=FALSE)))/reps
##    user  system elapsed 
-##  0.0469  0.0008  0.0479
+## 0.0445 0.0013 0.0459
@@ -470,7 +470,7 @@

K-nearest neighbourssf_use_s2(TRUE) system.time(for (i in 1:reps) pts_ll1_nb <- knn2nb(knearneigh(pts_ll, k=6)))/reps

##    user  system elapsed 
-##  0.0331  0.0001  0.0332
+## 0.0325 0.0000 0.0327

For this smaller data set, the legacy approach without spatial indexing is adequate, but slows down as the number of observations increases:

@@ -480,7 +480,7 @@

K-nearest neighbours
 system.time(for (i in 1:reps) pts_ll2_nb <- knn2nb(knearneigh(pts_ll, k=6)))/reps
##    user  system elapsed 
-##  0.0287  0.0001  0.0289
+## 0.0281 0.0001 0.0282

The WGS84 ellipsoid Great Circle distances differ a very little from the s2 spherical distances, yielding output that here diverges for two tract centroids:

@@ -535,7 +535,7 @@

Distance neighbours=0.75*max_1nn_ll)))/(reps/5) }
##    user  system elapsed 
-##   0.068   0.000   0.068
+## 0.0665 0.0000 0.0665

Alternatively, spherical distances can be used with dwithin=FALSE and s2::s2_closest_edges(); although running in similar time, s2::s2_closest_edges() @@ -544,7 +544,7 @@

Distance neighbours
 system.time(for (i in 1:(reps/5)) suppressWarnings(pts_ll5_nb <- dnearneigh(pts_ll, d1=0, d2=0.75*max_1nn_ll, dwithin=FALSE)))/(reps/5)
##    user  system elapsed 
-##   0.054   0.000   0.054
+## 0.0535 0.0000 0.0540
 if (packageVersion("s2") > "1.0.7") all.equal(pts_ll3_nb, pts_ll5_nb, check.attributes=FALSE)
## [1] TRUE
@@ -557,7 +557,7 @@

Distance neighbours=0.75*max_1nn_ll, dwithin=FALSE)))/(reps/5) }
##    user  system elapsed 
-##   0.048   0.000   0.048
+## 0.044 0.000 0.044

Using s2::s2_dwithin_matrix() requires a second pass, one for the lower bound, another for the upper bound, and a set difference operation to find neighbours in the distance band:

@@ -567,7 +567,7 @@

Distance neighbours=0.75*max_1nn_ll)))/(reps/5) }
##    user  system elapsed 
-##  0.0895  0.0005  0.0905
+## 0.0865 0.0000 0.0865
 if (packageVersion("s2") > "1.0.7") all.equal(pts_ll3a_nb, pts_ll5a_nb, check.attributes=FALSE)
## [1] TRUE
@@ -576,7 +576,7 @@

Distance neighbours
 system.time(for (i in 1:reps) suppressWarnings(pts_ll6_nb <- dnearneigh(pts_ll, d1=0, d2=0.75*max_1nn_ll, use_s2=FALSE)))/reps
##    user  system elapsed 
-##  0.0376  0.0000  0.0377
+## 0.0367 0.0000 0.0368

Minor differences may occur between the legacy ellipsoid and s2 spherical approaches:

@@ -606,7 +606,7 @@ 

Distance neighbours
 system.time(for (i in 1:reps) suppressWarnings(pts_ll6a_nb <- dnearneigh(pts_ll, d1=5, d2=0.75*max_1nn_ll, use_s2=FALSE)))/reps

##    user  system elapsed 
-##  0.0314  0.0001  0.0318
+## 0.0286 0.0001 0.0288
 if (packageVersion("s2") > "1.0.7") all.equal(pts_ll5a_nb, pts_ll6a_nb, check.attributes=FALSE)
##  [1] "Component 20: Numeric: lengths (6, 5) differ"       
@@ -658,7 +658,7 @@ 

Contiguity neighbours for spherical polygon supportsf_use_s2(TRUE) system.time(for (i in 1:reps) NY8_sf_1_nb_ll <- poly2nb(NY8_sf_ll, queen=TRUE, snap=eps))/reps

##    user  system elapsed 
-##  0.1660  0.0016  0.1682
+## 0.1569 0.0024 0.1599
 all.equal(NY8_sf_1_nb, NY8_sf_1_nb_ll, check.attributes=FALSE)
## [1] TRUE
diff --git a/docs/articles/subgraphs.html b/docs/articles/subgraphs.html index 91d90574..5c815182 100644 --- a/docs/articles/subgraphs.html +++ b/docs/articles/subgraphs.html @@ -179,7 +179,7 @@

No-neighbour observations w50m <- st_read(target) }
## Reading layer `GB_2024_Wales_50m' from data source 
-##   `/tmp/RtmpPpr0yz/temp_libpathafa452560f839/spdep/etc/shapes/GB_2024_Wales_50m.gpkg.zip' 
+##   `/tmp/RtmpcuVtwS/temp_libpathba7861ea38876/spdep/etc/shapes/GB_2024_Wales_50m.gpkg.zip' 
 ##   using driver `GPKG'
 ## Simple feature collection with 32 features and 19 fields
 ## Geometry type: MULTIPOLYGON
@@ -371,7 +371,7 @@ 

Subgraphssc50m <- st_read(target) }

## Reading layer `GB_2024_southcoast_50m' from data source 
-##   `/tmp/RtmpPpr0yz/temp_libpathafa452560f839/spdep/etc/shapes/GB_2024_southcoast_50m.gpkg.zip' 
+##   `/tmp/RtmpcuVtwS/temp_libpathba7861ea38876/spdep/etc/shapes/GB_2024_southcoast_50m.gpkg.zip' 
 ##   using driver `GPKG'
 ## Simple feature collection with 119 features and 19 fields
 ## Geometry type: MULTIPOLYGON
@@ -654,7 +654,7 @@ 

Unintentional disconnected graphs tokyo <- st_read(target) }

## Reading layer `tokyo' from data source 
-##   `/tmp/RtmpPpr0yz/temp_libpathafa452560f839/spdep/etc/shapes/tokyo.gpkg.zip' 
+##   `/tmp/RtmpcuVtwS/temp_libpathba7861ea38876/spdep/etc/shapes/tokyo.gpkg.zip' 
 ##   using driver `GPKG'
 ## Simple feature collection with 262 features and 3 fields
 ## Geometry type: MULTIPOLYGON
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index a91fa60a..8f9c3992 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -7,7 +7,7 @@ articles:
   nb: nb.html
   sids: sids.html
   subgraphs: subgraphs.html
-last_built: 2024-09-10T08:34Z
+last_built: 2024-09-10T14:30Z
 urls:
   reference: https://r-spatial.github.io/spdep/reference
   article: https://r-spatial.github.io/spdep/articles
diff --git a/docs/reference/bhicv.html b/docs/reference/bhicv.html
index e0475f4f..e5a01bb0 100644
--- a/docs/reference/bhicv.html
+++ b/docs/reference/bhicv.html
@@ -90,7 +90,7 @@ 

Examples bh <- st_read(target) } #> Reading layer `bhicv' from data source -#> `/tmp/RtmpPpr0yz/temp_libpathafa452560f839/spdep/etc/shapes/bhicv.gpkg.zip' +#> `/tmp/RtmpcuVtwS/temp_libpathba7861ea38876/spdep/etc/shapes/bhicv.gpkg.zip' #> using driver `GPKG' #> Simple feature collection with 98 features and 8 fields #> Geometry type: POLYGON diff --git a/docs/reference/compon.html b/docs/reference/compon.html index 28873812..1b378eb2 100644 --- a/docs/reference/compon.html +++ b/docs/reference/compon.html @@ -189,12 +189,12 @@

Examplessystem.time(udir <- n.comp.nb(make.sym.nb(k6))) } #> user system elapsed -#> 2.104 0.000 2.111 +#> 2.076 0.000 2.087 if (run) { system.time(dir <- n.comp.nb(k6)) } #> user system elapsed -#> 0.701 0.003 0.707 +#> 0.680 0.002 0.685 if (run) { udir$nc } diff --git a/docs/reference/dnearneigh.html b/docs/reference/dnearneigh.html index c226d66f..df95f316 100644 --- a/docs/reference/dnearneigh.html +++ b/docs/reference/dnearneigh.html @@ -222,14 +222,14 @@

Examples#> Warning: neighbour object has 11 sub-graphs system.time(o <- nbdists(gck1b, xy1)) #> user system elapsed -#> 0.007 0.000 0.007 +#> 0.006 0.000 0.006 (all.linked <- max(unlist(o))) #> [1] 522.4464 # use s2 brute-force dwithin_matrix approach for s2 <= 1.0.7 system.time(gc.nb.dwithin <- dnearneigh(xy1, 0, all.linked, use_s2=TRUE, dwithin=TRUE)) #> Warning: neighbour object has 3 sub-graphs #> user system elapsed -#> 0.012 0.000 0.011 +#> 0.011 0.001 0.012 summary(gc.nb, xy1, scale=0.5) #> Neighbour list object: #> Number of regions: 48 @@ -251,13 +251,13 @@

Examples} #> Warning: neighbour object has 3 sub-graphs #> user system elapsed -#> 0.01 0.00 0.01 +#> 0.010 0.000 0.009 if (packageVersion("s2") > "1.0.7") { system.time(gc.nb.dwithin <- dnearneigh(xy1, 0, all.linked, use_s2=TRUE, dwithin=TRUE)) } #> Warning: neighbour object has 3 sub-graphs #> user system elapsed -#> 0.012 0.000 0.012 +#> 0.012 0.000 0.011 if (packageVersion("s2") > "1.0.7") { summary(gc.nb.dwithin, xy1, scale=0.5) } @@ -300,7 +300,7 @@

Examplessystem.time(gc.nb.legacy <- dnearneigh(xy1, 0, all.linked, use_s2=FALSE)) #> Warning: neighbour object has 3 sub-graphs #> user system elapsed -#> 0.007 0.000 0.006 +#> 0.006 0.000 0.006 summary(gc.nb, xy1, scale=0.5) #> Neighbour list object: #> Number of regions: 48 diff --git a/docs/reference/joincount.multi.html b/docs/reference/joincount.multi.html index 53c169cc..3c028905 100644 --- a/docs/reference/joincount.multi.html +++ b/docs/reference/joincount.multi.html @@ -229,6 +229,56 @@

Examplescat("replicates Upton & Fingleton table 3.7 (p. 169)\n") #> replicates Upton & Fingleton table 3.7 (p. 169) # } +GDAL37 <- as.numeric_version(unname(sf_extSoftVersion()["GDAL"])) >= "3.7.0" +file <- "etc/shapes/GB_2024_southcoast_50m.gpkg.zip" +zipfile <- system.file(file, package="spdep") +if (GDAL37) { + sc50m <- st_read(zipfile) +} else { + td <- tempdir() + bn <- sub(".zip", "", basename(file), fixed=TRUE) + target <- unzip(zipfile, files=bn, exdir=td) + sc50m <- st_read(target) +} +#> Reading layer `GB_2024_southcoast_50m' from data source +#> `/tmp/RtmpcuVtwS/temp_libpathba7861ea38876/spdep/etc/shapes/GB_2024_southcoast_50m.gpkg.zip' +#> using driver `GPKG' +#> Simple feature collection with 119 features and 19 fields +#> Geometry type: MULTIPOLYGON +#> Dimension: XY +#> Bounding box: xmin: 82643.12 ymin: 5342.9 xmax: 640301.6 ymax: 187226.2 +#> Projected CRS: OSGB36 / British National Grid +plot(sc50m[,"Winner"], pal=c("#2297E6", "#61D04F", "#DF536B", "#F5C710")) + +nb_sc_50m <- poly2nb(sc50m, row.names=as.character(sc50m$Constituency)) +#> Warning: neighbour object has 2 sub-graphs; +#> if this sub-graph count seems unexpected, try increasing the snap argument. +sub2 <- attr(nb_sc_50m, "region.id")[attr(nb_sc_50m, "ncomp")$comp.id == 2L] +iowe <- match(sub2[1], attr(nb_sc_50m, "region.id")) +diowe <- c(st_distance(sc50m[iowe,], sc50m)) +meet_criterion <- sum(diowe <= units::set_units(5000, "m")) +cands <- attr(nb_sc_50m, "region.id")[order(diowe)[1:meet_criterion]] +nb_sc_50m_iowe <- addlinks1(nb_sc_50m, from = cands[1], + to = cands[3:meet_criterion]) +ioww <- match(sub2[2], attr(nb_sc_50m, "region.id")) +dioww <- c(st_distance(sc50m[ioww,], sc50m)) +meet_criterion <- sum(dioww <= units::set_units(5000, "m")) +cands <- attr(nb_sc_50m, "region.id")[order(dioww)[1:meet_criterion]] +nb_sc_50m_iow <- addlinks1(nb_sc_50m_iowe, from = cands[2], to = cands[3:meet_criterion]) +nb_sc_1_2 <- nblag_cumul(nblag(nb_sc_50m_iow, 2)) +joincount.multi(factor(sc50m$Winner), nb2listw(nb_sc_1_2, style="B")) +#> Joincount Expected Variance z-value +#> Con:Con 146.0000 84.4324 116.3530 5.7077 +#> Green:Green 0.0000 0.0000 0.0000 NaN +#> LD:LD 100.0000 75.8866 103.9440 2.3651 +#> Lab:Lab 63.0000 98.1057 136.0379 -3.0099 +#> Green:Con 4.0000 4.4438 5.8532 -0.1834 +#> LD:Con 198.0000 164.4210 166.3583 2.6034 +#> LD:Green 4.0000 4.2159 5.4573 -0.0924 +#> Lab:Con 184.0000 186.6401 180.9233 -0.1963 +#> Lab:Green 3.0000 4.7856 6.4663 -0.7022 +#> Lab:LD 98.0000 177.0688 175.2035 -5.9736 +#> Jtot 491.0000 541.5753 153.6123 -4.0806