forked from get-smooth/secp256r1-verify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ECDSA256r1.sol
249 lines (215 loc) · 10.1 KB
/
ECDSA256r1.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19 <0.9.0;
import { ECDSA, Curve, p, gx, gy, n, MINUS_2, MINUS_1, MODEXP_PRECOMPILE, a, b } from "./utils/ECDSA.sol";
/// @title ECDSA256r1
/// @notice A library to verify ECDSA signatures made on the secp256r1 curve
/// @dev This is the easiest library to deal with but also the most expensive in terms of gas cost. Indeed, this library
/// must calculate multiple points on the curve in order to verify the signature. Use it kmowingly.
/// @custom:experimental This is an experimental library.
/// @custom:warning This code is NOT intended for use with non-prime order curves due to security considerations. The
/// code is expressly optimized for curves with a=-3 and of prime order. Constants like -1, and -2
/// should be replaced if this code is to be utilized for any curve other than sec256R1.
library ECDSA256r1 {
using { Curve.nModInv } for uint256;
/// @notice Verifies that a point is on the secp256r1 curve
/// @param x The x-coordinate of the point
/// @param y The y-coordinate of the point
/// @return bool True if the point is on the curve, false otherwise
function isPointValid(uint256 x, uint256 y) internal pure returns (bool) {
if ((0 == x % p) && (0 == y % p)) {
return false;
}
unchecked {
// y^2
uint256 lhs = mulmod(y, y, p);
// x^3+ax
uint256 rhs = addmod(mulmod(mulmod(x, x, p), x, p), mulmod(x, a, p), p);
// x^3 + a*x + b
rhs = addmod(rhs, b, p);
return lhs == rhs;
}
}
//// @notice Computes uG + vQ using Strauss-Shamir's trick on the secp256r1 elliptic curve, where G is the basepoint
/// and Q is the public key.
/// @param Q0 x-coordinate of the input point Q
/// @param Q1 y-coordinate of the input point Q
/// @param scalar_u Multiplier for basepoint G
/// @param scalar_v Multiplier for input point Q
/// @return X Resulting x-coordinate of the computed point
function mulmuladd(uint256 Q0, uint256 Q1, uint256 scalar_u, uint256 scalar_v) internal returns (uint256 X) {
uint256 zz;
uint256 zzz;
uint256 Y;
uint256 index = 255;
uint256[6] memory T;
uint256 H0;
uint256 H1;
unchecked {
if (scalar_u == 0 && scalar_v == 0) return 0;
// will not work if Q=P, obvious forbidden private key
(H0, H1) = ECDSA.affAdd(gx, gy, Q0, Q1);
assembly {
for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
index := sub(index, 1)
T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
} { }
zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
if eq(zz, 1) {
X := gx
Y := gy
}
if eq(zz, 2) {
X := Q0
Y := Q1
}
if eq(zz, 3) {
X := H0
Y := H1
}
index := sub(index, 1)
zz := 1
zzz := 1
// inlined EcZZ_Dbl
for { } gt(MINUS_1, index) { index := sub(index, 1) } {
// U = 2*Y1, y free
let T1 := mulmod(2, Y, p)
// V=U^2
let T2 := mulmod(T1, T1, p)
// S = X1*V
let T3 := mulmod(X, T2, p)
// W=UV
T1 := mulmod(T1, T2, p)
// M=3*(X1-ZZ1)*(X1+ZZ1)
let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p)
// zzz3=W*zzz1
zzz := mulmod(T1, zzz, p)
// zz3=V*ZZ1, V free
zz := mulmod(T2, zz, p)
//X3=M^2-2S
X := addmod(mulmod(T4, T4, p), mulmod(MINUS_2, T3, p), p)
// -M(S-X3)=M(X3-S)
T2 := mulmod(T4, addmod(X, sub(p, T3), p), p)
// -Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
Y := addmod(mulmod(T1, Y, p), T2, p)
{
//value of dibit
T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
// loop until T4 != 0
if iszero(T4) {
//restore the -Y inversion
Y := sub(p, Y)
continue
}
if eq(T4, 1) {
T1 := gx
T2 := gy
}
if eq(T4, 2) {
T1 := Q0
T2 := Q1
}
if eq(T4, 3) {
T1 := H0
T2 := H1
}
if eq(zz, 0) {
X := T1
Y := T2
zz := 1
zzz := 1
continue
}
// inlined EcZZ_AddN
// R
let y2 := addmod(mulmod(T2, zzz, p), Y, p)
// P
T2 := addmod(mulmod(T1, zz, p), sub(p, X), p)
// special extremely rare case accumulator where EcAdd is replaced by EcDbl, no optimize needed
// TODO: construct edge vector case
if eq(y2, 0) {
if eq(T2, 0) {
// U = 2*Y1, y free
T1 := mulmod(MINUS_2, Y, p)
// V=U^2
T2 := mulmod(T1, T1, p)
// W=UV
T1 := mulmod(T1, T2, p)
//(X-ZZ)(X+ZZ) -- xPlusZZ/xMinusZZ needed for stack management
let xPlusZZ := addmod(X, sub(p, zz), p)
let xMinusZZ := addmod(X, zz, p)
y2 := mulmod(xMinusZZ, xPlusZZ, p)
//M=3*(X-ZZ)(X+ZZ)
T4 := mulmod(3, y2, p)
// zzz3=W*zzz1
zzz := mulmod(T1, zzz, p)
// zz3=V*ZZ1, V free
zz := mulmod(T2, zz, p)
// S = X1*V
T3 := mulmod(X, T2, p)
// X3=M^2-2S
X := addmod(mulmod(T4, T4, p), mulmod(MINUS_2, T3, p), p)
// M(S-X3)
T2 := mulmod(T4, addmod(T3, sub(p, X), p), p)
// Y3=M(S-X3)-W*Y1
Y := addmod(T2, mulmod(T1, Y, p), p)
continue
}
}
// PP
T4 := mulmod(T2, T2, p)
// PPP, this one could be spared, but adding this register spare gas
let TT1 := mulmod(T4, T2, p)
zz := mulmod(zz, T4, p)
// zz3=V*ZZ1
zzz := mulmod(zzz, TT1, p)
let TT2 := mulmod(X, T4, p)
T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(MINUS_2, TT2, p), p)
Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
X := T4
}
}
// Define length of base, exponent and modulus. 0x20 == 32 bytes
mstore(add(T, 0x60), zz)
mstore(T, 0x20)
mstore(add(T, 0x20), 0x20)
// Define variables base, exponent and modulus
mstore(add(T, 0x40), 0x20)
mstore(add(T, 0x80), MINUS_2)
mstore(add(T, 0xa0), p)
// Call the precompiled contract ModExp (0x05)
if iszero(call(not(0), MODEXP_PRECOMPILE, 0, T, 0xc0, T, 0x20)) { revert(0, 0) }
// X/zz
X := mulmod(X, mload(T), p)
}
}
return X;
}
/// @notice Verifies an ECDSA signature on the secp256r1 curve given the message, signature, and public key.
/// This function is the only one exposed by the library
/// @param message The original message that was signed
/// @param r uint256 The r value of the ECDSA signature.
/// @param s uint256 The s value of the ECDSA signature.
/// @param qx The x value of the public key used for the signature
/// @param qy The y value of the public key used for the signature
/// @return bool True if the signature is valid, false otherwise
/// @dev Note the required interactions with the precompled contract can revert the transaction
function verify(bytes32 message, uint256 r, uint256 s, uint256 qx, uint256 qy) internal returns (bool) {
// check the validity of the signature
if (r == 0 || r >= n || s == 0 || s >= n) {
return false;
}
// check the public key is on the curve
if (!ECDSA.affIsOnCurve(qx, qy)) {
return false;
}
// calculate the scalars used for the multiplication of the point
uint256 sInv = s.nModInv();
uint256 scalar_u = mulmod(uint256(message), sInv, n);
uint256 scalar_v = mulmod(r, sInv, n);
uint256 x1 = mulmuladd(qx, qy, scalar_u, scalar_v);
assembly {
x1 := addmod(x1, sub(n, r), n)
}
return x1 == 0;
}
}