diff --git a/psydac/linalg/basic.py b/psydac/linalg/basic.py index dc86957b4..f8a137053 100644 --- a/psydac/linalg/basic.py +++ b/psydac/linalg/basic.py @@ -879,11 +879,39 @@ class InverseLinearOperator(LinearOperator): Iterative solver for square linear system Ax=b, where x and b belong to (normed) vector space V. + Parameters + ---------- + A : psydac.linalg.basic.LinearOperator + Left-hand-side matrix A of linear system. + + x0 : psydac.linalg.basic.Vector + First guess of solution for iterative solver (optional). + + tol : float + Absolute tolerance for L2-norm of residual r = A*x - b. + + maxiter: int + Maximum number of iterations. + + verbose : bool + If True, L2-norm of residual r is printed at each iteration. """ - @property - def space(self): - return self._space + def __init__(self, A, **kwargs): + + assert isinstance(A, LinearOperator) + assert A.domain.dimension == A.codomain.dimension + domain = A.codomain + codomain = A.domain + + if kwargs['x0'] is None: + kwargs['x0'] = codomain.zeros() + + self._A = A + self._domain = domain + self._codomain = codomain + self._options = kwargs + self._check_options(**self._options) @property def domain(self): @@ -900,10 +928,39 @@ def dtype(self): @property def linop(self): return self._A + + @linop.setter + def linop(self, a): + assert isinstance(a, LinearOperator) + assert a.domain is self.domain + assert a.codomain is self.codomain + self._A = a @property def options(self): return self._options + + @property + @abstractmethod + def solver(self): + "String that identifies the solver." + pass + + def _check_options(self, **kwargs): + for key, value in kwargs.items(): + + if key == 'x0': + if value is not None: + assert isinstance(value, Vector), "x0 must be a Vector or None" + assert value.space == self.codomain, "x0 belongs to the wrong VectorSpace" + elif key == 'tol': + assert is_real(value), "tol must be a real number" + assert value > 0, "tol must be positive" + elif key == 'maxiter': + assert isinstance(value, int), "maxiter must be an int" + assert value > 0, "maxiter must be positive" + elif key == 'verbose': + assert isinstance(value, bool), "verbose must be a bool" def toarray(self): raise NotImplementedError('toarray() is not defined for InverseLinearOperators.') @@ -921,13 +978,13 @@ def set_options(self, **kwargs): self._check_options(**kwargs) self._options.update(kwargs) - @abstractmethod - def _check_options(self, **kwargs): - pass - - @abstractmethod def transpose(self, conjugate=False): - pass + from psydac.linalg.solvers import inverse + + At = self.linop.transpose(conjugate=conjugate) + solver = self.solver + options = self._options + return inverse(At, solver, **options) @staticmethod def jacobi(A, b, out=None): @@ -1016,3 +1073,8 @@ def solve(self, rhs, out=None): @property def T(self): return self.transpose() + + +def is_real(x): + from numbers import Number + return isinstance(x, Number) and np.isrealobj(x) and not isinstance(x, bool) diff --git a/psydac/linalg/solvers.py b/psydac/linalg/solvers.py index 8519bc79f..6f21761d4 100644 --- a/psydac/linalg/solvers.py +++ b/psydac/linalg/solvers.py @@ -113,51 +113,16 @@ class ConjugateGradient(InverseLinearOperator): """ def __init__(self, A, *, x0=None, tol=1e-6, maxiter=1000, verbose=False, recycle=False): - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - domain = A.codomain - codomain = A.domain - - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() - - self._A = A - self._domain = domain - self._codomain = codomain - self._solver = 'cg' self._options = {"x0":x0, "tol":tol, "maxiter":maxiter, "verbose":verbose, "recycle":recycle} - self._check_options(**self._options) - self._tmps = {key: domain.zeros() for key in ("v", "r", "p")} + + super().__init__(A, **self._options) + + self._tmps = {key: self.domain.zeros() for key in ("v", "r", "p")} self._info = None - def _check_options(self, **kwargs): - for key, value in kwargs.items(): - - if key == 'x0': - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif key == 'tol': - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" - elif key == 'maxiter': - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif key == 'verbose': - assert isinstance(value, bool), "verbose must be a bool" - elif key == 'recycle': - assert isinstance(value, bool), "recycle must be a bool" - else: - raise ValueError(f"Key '{key}' not understood. See self._options for allowed keys.") - - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) + @property + def solver(self): + return 'cg' def solve(self, b, out=None): """ @@ -299,57 +264,23 @@ class PConjugateGradient(InverseLinearOperator): """ def __init__(self, A, *, pc=None, x0=None, tol=1e-6, maxiter=1000, verbose=False, recycle=False): - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - domain = A.codomain - codomain = A.domain - - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() - - self._A = A - self._domain = domain - self._codomain = codomain - self._solver = 'pcg' - if pc is None: - pc = IdentityOperator(self._domain) self._options = {"x0":x0, "pc":pc, "tol":tol, "maxiter":maxiter, "verbose":verbose, "recycle":recycle} - self._check_options(**self._options) - tmps_codomain = {key: codomain.zeros() for key in ("p", "s")} - tmps_domain = {key: domain.zeros() for key in ("v", "r")} + + super().__init__(A, **self._options) + + if pc is None: + self._options['pc'] = IdentityOperator(self.domain) + else: + assert isinstance(pc, LinearOperator) + + tmps_codomain = {key: self.codomain.zeros() for key in ("p", "s")} + tmps_domain = {key: self.domain.zeros() for key in ("v", "r")} self._tmps = {**tmps_codomain, **tmps_domain} self._info = None - def _check_options(self, **kwargs): - for key, value in kwargs.items(): - - if key == 'pc': - assert isinstance(value, LinearOperator) - elif key == 'x0': - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif key == 'tol': - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" - elif key == 'maxiter': - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif key == 'verbose': - assert isinstance(value, bool), "verbose must be a bool" - elif key == 'recycle': - assert isinstance(value, bool), "recycle must be a bool" - else: - raise ValueError(f"Key '{key}' not understood. See self._options for allowed keys.") - - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) + @property + def solver(self): + return 'pcg' def solve(self, b, out=None): """ @@ -501,52 +432,17 @@ class BiConjugateGradient(InverseLinearOperator): """ def __init__(self, A, *, x0=None, tol=1e-6, maxiter=1000, verbose=False, recycle=False): - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - domain = A.codomain - codomain = A.domain - - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() - - self._A = A - self._Ah = A.H - self._domain = domain - self._codomain = codomain - self._solver = 'bicg' self._options = {"x0":x0, "tol":tol, "maxiter":maxiter, "verbose":verbose, "recycle":recycle} - self._check_options(**self._options) - self._tmps = {key: domain.zeros() for key in ("v", "r", "p", "vs", "rs", "ps")} + + super().__init__(A, **self._options) + + self._Ah = A.H + self._tmps = {key: self.domain.zeros() for key in ("v", "r", "p", "vs", "rs", "ps")} self._info = None - def _check_options(self, **kwargs): - for key, value in kwargs.items(): - - if key == 'x0': - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif key == 'tol': - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" - elif key == 'maxiter': - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif key == 'verbose': - assert isinstance(value, bool), "verbose must be a bool" - elif key == 'recycle': - assert isinstance(value, bool), "recycle must be a bool" - else: - raise ValueError(f"Key '{key}' not understood. See self._options for allowed keys.") - - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) + @property + def solver(self): + return 'bicg' def solve(self, b, out=None): """ @@ -691,6 +587,207 @@ def solve(self, b, out=None): def dot(self, b, out=None): return self.solve(b, out=out) +#=============================================================================== +class BiConjugateGradientStabilized(InverseLinearOperator): + """ + A LinearOperator subclass. Objects of this class are meant to be created using :func:~`solvers.inverse`. + + The .dot (and also the .solve) function are based on the + Biconjugate gradient Stabilized (BCGSTAB) algorithm for solving linear system Ax=b. + Implementation from [1], page 175. + + Parameters + ---------- + A : psydac.linalg.basic.LinearOperator + Left-hand-side matrix A of linear system; individual entries A[i,j] + can't be accessed, but A has 'shape' attribute and provides 'dot(p)' + function (i.e. matrix-vector product A*p). + + x0 : psydac.linalg.basic.Vector + First guess of solution for iterative solver (optional). + + tol : float + Absolute tolerance for 2-norm of residual r = A*x - b. + + maxiter: int + Maximum number of iterations. + + verbose : bool + If True, 2-norm of residual r is printed at each iteration. + + recycle : bool + Stores a copy of the output in x0 to speed up consecutive calculations of slightly altered linear systems + + References + ---------- + [1] A. Maister, Numerik linearer Gleichungssysteme, Springer ed. 2015. + + """ + def __init__(self, A, *, x0=None, tol=1e-6, maxiter=1000, verbose=False, recycle=False): + + self._options = {"x0": x0, "tol": tol, "maxiter": maxiter, "verbose": verbose, "recycle":recycle} + + super().__init__(A, **self._options) + + self._tmps = {key: self.domain.zeros() for key in ("v", "r", "p", "vr", "r0")} + self._info = None + + @property + def solver(self): + return 'bicgstab' + + def solve(self, b, out=None): + """ + Biconjugate gradient stabilized method (BCGSTAB) algorithm for solving linear system Ax=b. + Implementation from [1], page 175. + ToDo: Add optional preconditioner + + Parameters + ---------- + b : psydac.linalg.basic.Vector + Right-hand-side vector of linear system. Individual entries b[i] need + not be accessed, but b has 'shape' attribute and provides 'copy()' and + 'dot(p)' functions (dot(p) is the vector inner product b*p ); moreover, + scalar multiplication and sum operations are available. + out : psydac.linalg.basic.Vector | NoneType + The output vector, or None (optional). + + Returns + ------- + x : psydac.linalg.basic.Vector + Numerical solution of linear system. To check the convergence of the solver, + use the method InverseLinearOperator.get_info(). + + info : dict + Dictionary containing convergence information: + - 'niter' = (int) number of iterations + - 'success' = (boolean) whether convergence criteria have been met + - 'res_norm' = (float) 2-norm of residual vector r = A*x - b. + + References + ---------- + [1] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the + solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 13(2):631–644, 1992. + """ + + A = self._A + domain = self._domain + codomain = self._codomain + options = self._options + x0 = options["x0"] + tol = options["tol"] + maxiter = options["maxiter"] + verbose = options["verbose"] + recycle = options["recycle"] + + assert isinstance(b, Vector) + assert b.space is domain + + # First guess of solution + if out is not None: + assert isinstance(out, Vector) + assert out.space is codomain + + x = x0.copy(out=out) + + # Extract local storage + v = self._tmps["v"] + r = self._tmps["r"] + p = self._tmps["p"] + vr = self._tmps["vr"] + r0 = self._tmps["r0"] + + # First values + A.dot(x, out=v) + b.copy(out=r) + r -= v + #r = b - A.dot(x) + r.copy(out=p) + v *= 0.0 + vr *= 0.0 + + r.copy(out=r0) + + res_sqr = r.dot(r).real + tol_sqr = tol ** 2 + + if verbose: + print("BiCGSTAB solver:") + print("+---------+---------------------+") + print("+ Iter. # | L2-norm of residual |") + print("+---------+---------------------+") + template = "| {:7d} | {:19.2e} |" + + # Iterate to convergence + for m in range(1, maxiter + 1): + + if res_sqr < tol_sqr: + m -= 1 + break + + # ----------------------- + # MATRIX-VECTOR PRODUCTS + # ----------------------- + v = A.dot(p, out=v) + # ----------------------- + + # c := (r0, r) + c = r0.dot(r) + + # a := (r0, r) / (r0, v) + a = c / (r0.dot(v)) + + # r := r - a*v + r.mul_iadd(-a, v) + + # vr := A*r + vr = A.dot(r, out=vr) + + # w := (r, A*r) / (A*r, A*r) + w = r.dot(vr) / vr.dot(vr) + + # ----------------------- + # SOLUTION UPDATE + # ----------------------- + # x := x + a*p +w*r + x.mul_iadd(a, p) + x.mul_iadd(w, r) + # ----------------------- + + # r := r - w*A*r + r.mul_iadd(-w, vr) + + # ||r||_2 := (r, r) + res_sqr = r.dot(r).real + + if res_sqr < tol_sqr: + break + + # b := a / w * (r0, r)_{m+1} / (r0, r)_m + b = r0.dot(r) * a / (c * w) + + # p := r + b*p- b*w*v + p *= b + p += r + p.mul_iadd(-b * w, v) + + if verbose: + print(template.format(m, sqrt(res_sqr))) + + if verbose: + print("+---------+---------------------+") + + # Convergence information + self._info = {'niter': m, 'success': res_sqr < tol_sqr, 'res_norm': sqrt(res_sqr)} + + if recycle: + x.copy(out=self._options["x0"]) + + return x + + def dot(self, b, out=None): + return self.solve(b, out=out) + #=============================================================================== class PBiConjugateGradientStabilized(InverseLinearOperator): """ @@ -720,61 +817,28 @@ class PBiConjugateGradientStabilized(InverseLinearOperator): """ def __init__(self, A, *, pc=None, x0=None, tol=1e-6, maxiter=1000, verbose=False): - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - domain = A.codomain - codomain = A.domain + self._options = { "pc": pc, "x0": x0, "tol": tol, "maxiter": maxiter, "verbose": verbose} - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() + super().__init__(A, **self._options) - self._A = A - self._domain = domain - self._codomain = codomain - self._solver = 'pbicgstab' if pc is None: - pc = IdentityOperator(self._domain) - self._options = { "pc": pc, "x0": x0, "tol": tol, "maxiter": maxiter, "verbose": verbose} - self._check_options(**self._options) - self._tmps = {key: domain.zeros() for key in ("v", "r", "s", "t", + self._options['pc'] = IdentityOperator(self.domain) + else: + assert isinstance(pc, LinearOperator) + + self._tmps = {key: self.domain.zeros() for key in ("v", "r", "s", "t", "vp", "rp", "sp", "tp", "pp", "av", "app", "osp", "rp0")} self._info = None - def _check_options(self, **kwargs): - keys = ('pc', 'x0', 'tol', 'maxiter', 'verbose') - for key, value in kwargs.items(): - idx = [key == keys[i] for i in range(len(keys))] - assert any(idx), "key not supported, check options" - true_idx = idx.index(True) - if true_idx == 0: - assert isinstance(value, LinearOperator) - elif true_idx == 1: - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif true_idx == 2: - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" - elif true_idx == 3: - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif true_idx == 4: - assert isinstance(value, bool), "verbose must be a bool" + @property + def solver(self): + return 'pbicgstab' def _update_options( self ): self._options = {"pc": self._pc, "x0":self._x0, "tol":self._tol, "maxiter": self._maxiter, "verbose": self._verbose} - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) - def solve(self, b, out=None): """ Preconditioned biconjugate gradient stabilized method (PBCGSTAB) algorithm for solving linear system Ax=b. @@ -953,242 +1017,6 @@ def solve(self, b, out=None): def dot(self, b, out=None): return self.solve(b, out=out) -#=============================================================================== -class BiConjugateGradientStabilized(InverseLinearOperator): - """ - A LinearOperator subclass. Objects of this class are meant to be created using :func:~`solvers.inverse`. - - The .dot (and also the .solve) function are based on the - Biconjugate gradient Stabilized (BCGSTAB) algorithm for solving linear system Ax=b. - Implementation from [1], page 175. - - Parameters - ---------- - A : psydac.linalg.basic.LinearOperator - Left-hand-side matrix A of linear system; individual entries A[i,j] - can't be accessed, but A has 'shape' attribute and provides 'dot(p)' - function (i.e. matrix-vector product A*p). - - x0 : psydac.linalg.basic.Vector - First guess of solution for iterative solver (optional). - - tol : float - Absolute tolerance for 2-norm of residual r = A*x - b. - - maxiter: int - Maximum number of iterations. - - verbose : bool - If True, 2-norm of residual r is printed at each iteration. - - recycle : bool - Stores a copy of the output in x0 to speed up consecutive calculations of slightly altered linear systems - - References - ---------- - [1] A. Maister, Numerik linearer Gleichungssysteme, Springer ed. 2015. - - """ - def __init__(self, A, *, x0=None, tol=1e-6, maxiter=1000, verbose=False, recycle=False): - - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - domain = A.codomain - codomain = A.domain - - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() - - self._A = A - self._domain = domain - self._codomain = codomain - self._solver = 'bicgstab' - self._options = {"x0": x0, "tol": tol, "maxiter": maxiter, "verbose": verbose, "recycle":recycle} - self._check_options(**self._options) - self._tmps = {key: domain.zeros() for key in ("v", "r", "p", "vr", "r0")} - self._info = None - - def _check_options(self, **kwargs): - for key, value in kwargs.items(): - - if key == 'x0': - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif key == 'tol': - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" - elif key == 'maxiter': - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif key == 'verbose': - assert isinstance(value, bool), "verbose must be a bool" - elif key == 'recycle': - assert isinstance(value, bool), "recycle must be a bool" - else: - raise ValueError(f"Key '{key}' not understood. See self._options for allowed keys.") - - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) - - def solve(self, b, out=None): - """ - Biconjugate gradient stabilized method (BCGSTAB) algorithm for solving linear system Ax=b. - Implementation from [1], page 175. - ToDo: Add optional preconditioner - - Parameters - ---------- - b : psydac.linalg.basic.Vector - Right-hand-side vector of linear system. Individual entries b[i] need - not be accessed, but b has 'shape' attribute and provides 'copy()' and - 'dot(p)' functions (dot(p) is the vector inner product b*p ); moreover, - scalar multiplication and sum operations are available. - out : psydac.linalg.basic.Vector | NoneType - The output vector, or None (optional). - - Returns - ------- - x : psydac.linalg.basic.Vector - Numerical solution of linear system. To check the convergence of the solver, - use the method InverseLinearOperator.get_info(). - - info : dict - Dictionary containing convergence information: - - 'niter' = (int) number of iterations - - 'success' = (boolean) whether convergence criteria have been met - - 'res_norm' = (float) 2-norm of residual vector r = A*x - b. - - References - ---------- - [1] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the - solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 13(2):631–644, 1992. - """ - - A = self._A - domain = self._domain - codomain = self._codomain - options = self._options - x0 = options["x0"] - tol = options["tol"] - maxiter = options["maxiter"] - verbose = options["verbose"] - recycle = options["recycle"] - - assert isinstance(b, Vector) - assert b.space is domain - - # First guess of solution - if out is not None: - assert isinstance(out, Vector) - assert out.space is codomain - - x = x0.copy(out=out) - - # Extract local storage - v = self._tmps["v"] - r = self._tmps["r"] - p = self._tmps["p"] - vr = self._tmps["vr"] - r0 = self._tmps["r0"] - - # First values - A.dot(x, out=v) - b.copy(out=r) - r -= v - #r = b - A.dot(x) - r.copy(out=p) - v *= 0.0 - vr *= 0.0 - - r.copy(out=r0) - - res_sqr = r.dot(r).real - tol_sqr = tol ** 2 - - if verbose: - print("BiCGSTAB solver:") - print("+---------+---------------------+") - print("+ Iter. # | L2-norm of residual |") - print("+---------+---------------------+") - template = "| {:7d} | {:19.2e} |" - - # Iterate to convergence - for m in range(1, maxiter + 1): - - if res_sqr < tol_sqr: - m -= 1 - break - - # ----------------------- - # MATRIX-VECTOR PRODUCTS - # ----------------------- - v = A.dot(p, out=v) - # ----------------------- - - # c := (r0, r) - c = r0.dot(r) - - # a := (r0, r) / (r0, v) - a = c / (r0.dot(v)) - - # r := r - a*v - r.mul_iadd(-a, v) - - # vr := A*r - vr = A.dot(r, out=vr) - - # w := (r, A*r) / (A*r, A*r) - w = r.dot(vr) / vr.dot(vr) - - # ----------------------- - # SOLUTION UPDATE - # ----------------------- - # x := x + a*p +w*r - x.mul_iadd(a, p) - x.mul_iadd(w, r) - # ----------------------- - - # r := r - w*A*r - r.mul_iadd(-w, vr) - - # ||r||_2 := (r, r) - res_sqr = r.dot(r).real - - if res_sqr < tol_sqr: - break - - # b := a / w * (r0, r)_{m+1} / (r0, r)_m - b = r0.dot(r) * a / (c * w) - - # p := r + b*p- b*w*v - p *= b - p += r - p.mul_iadd(-b * w, v) - - if verbose: - print(template.format(m, sqrt(res_sqr))) - - if verbose: - print("+---------+---------------------+") - - # Convergence information - self._info = {'niter': m, 'success': res_sqr < tol_sqr, 'res_norm': sqrt(res_sqr)} - - if recycle: - x.copy(out=self._options["x0"]) - - return x - - def dot(self, b, out=None): - return self.solve(b, out=out) - #=============================================================================== class MinimumResidual(InverseLinearOperator): """ @@ -1237,52 +1065,16 @@ class MinimumResidual(InverseLinearOperator): """ def __init__(self, A, *, x0=None, tol=1e-6, maxiter=1000, verbose=False, recycle=False): - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - assert A.domain.dtype == float - domain = A.codomain - codomain = A.domain - - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() + self._options = {"x0":x0, "tol":tol, "maxiter":maxiter, "verbose":verbose} - self._A = A - self._domain = domain - self._codomain = codomain - self._solver = 'minres' - self._options = {"x0":x0, "tol":tol, "maxiter":maxiter, "verbose":verbose, "recycle":recycle} - self._check_options(**self._options) - self._tmps = {key: domain.zeros() for key in ("res_old", "res_new", "w_new", "w_work", "w_old", "v", "y")} + super().__init__(A, **self._options) + + self._tmps = {key: self.domain.zeros() for key in ("res_old", "res_new", "w_new", "w_work", "w_old", "v", "y")} self._info = None - def _check_options(self, **kwargs): - for key, value in kwargs.items(): - - if key == 'x0': - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif key == 'tol': - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" - elif key == 'maxiter': - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif key == 'verbose': - assert isinstance(value, bool), "verbose must be a bool" - elif key == 'recycle': - assert isinstance(value, bool), "recycle must be a bool" - else: - raise ValueError(f"Key '{key}' not understood. See self._options for allowed keys.") - - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) + @property + def solver(self): + return 'minres' def solve(self, b, out=None): """ @@ -1569,67 +1361,34 @@ class LSMR(InverseLinearOperator): """ def __init__(self, A, *, x0=None, tol=None, atol=None, btol=None, maxiter=1000, conlim=1e8, verbose=False, recycle=False): - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - domain = A.codomain - codomain = A.domain - - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() - - self._A = A - self._domain = domain - self._codomain = codomain - self._solver = 'lsmr' self._options = {"x0":x0, "tol":tol, "atol":atol, "btol":btol, "maxiter":maxiter, "conlim":conlim, "verbose":verbose, "recycle":recycle} - self._check_options(**self._options) + + super().__init__(A, **self._options) + + # check additional options + if atol is not None: + assert is_real(atol), "atol must be a real number" + assert atol >= 0, "atol must not be negative" + if btol is not None: + assert is_real(btol), "btol must be a real number" + assert btol >= 0, "btol must not be negative" + assert is_real(conlim), "conlim must be a real number" # actually an integer? + assert conlim > 0, "conlim must be positive" # supposedly + self._info = None self._successful = None - tmps_domain = {key: domain.zeros() for key in ("u", "u_work")} - tmps_codomain = {key: codomain.zeros() for key in ("v", "v_work", "h", "hbar")} + tmps_domain = {key: self.domain.zeros() for key in ("u", "u_work")} + tmps_codomain = {key: self.codomain.zeros() for key in ("v", "v_work", "h", "hbar")} self._tmps = {**tmps_codomain, **tmps_domain} + @property + def solver(self): + return 'lsmr' + def get_success(self): return self._successful - def _check_options(self, **kwargs): - for key, value in kwargs.items(): - - if key == 'x0': - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif key == 'tol': - if value is not None: - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" # suppose atol/btol must also be positive numbers - elif key == 'atol' or key == 'btol': - if value is not None: - assert is_real(value), "atol/btol must be a real number" - assert value >= 0, "atol/btol must not be negative" - elif key == 'maxiter': - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif key == 'conlim': - assert is_real(value), "conlim must be a real number" # actually an integer? - assert value > 0, "conlim must be positive" # supposedly - elif key == 'verbose': - assert isinstance(value, bool), "verbose must be a bool" - elif key == 'recycle': - assert isinstance(value, bool), "recycle must be a bool" - else: - raise ValueError(f"Key '{key}' not understood. See self._options for allowed keys.") - - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) - def solve(self, b, out=None): """Iterative solver for least-squares problems. lsmr solves the system of linear equations ``Ax = b``. If the system @@ -1956,55 +1715,20 @@ class GMRES(InverseLinearOperator): """ def __init__(self, A, *, x0=None, tol=1e-6, maxiter=100, verbose=False, recycle=False): - assert isinstance(A, LinearOperator) - assert A.domain.dimension == A.codomain.dimension - domain = A.codomain - codomain = A.domain + self._options = {"x0":x0, "tol":tol, "maxiter":maxiter, "verbose":verbose, "recycle":recycle} - if x0 is not None: - assert isinstance(x0, Vector) - assert x0.space is codomain - else: - x0 = codomain.zeros() + super().__init__(A, **self._options) - self._A = A - self._domain = domain - self._codomain = codomain - self._solver = 'gmres' - self._options = {"x0":x0, "tol":tol, "maxiter":maxiter, "verbose":verbose, "recycle":recycle} - self._check_options(**self._options) - self._tmps = {key: domain.zeros() for key in ("r", "p")} + self._tmps = {key: self.domain.zeros() for key in ("r", "p")} # Initialize upper Hessenberg matrix self._H = np.zeros((self._options["maxiter"] + 1, self._options["maxiter"]), dtype=A.domain.dtype) self._Q = [] self._info = None - def _check_options(self, **kwargs): - for key, value in kwargs.items(): - - if key == 'x0': - if value is not None: - assert isinstance(value, Vector), "x0 must be a Vector or None" - assert value.space == self._codomain, "x0 belongs to the wrong VectorSpace" - elif key == 'tol': - assert is_real(value), "tol must be a real number" - assert value > 0, "tol must be positive" - elif key == 'maxiter': - assert isinstance(value, int), "maxiter must be an int" - assert value > 0, "maxiter must be positive" - elif key == 'verbose': - assert isinstance(value, bool), "verbose must be a bool" - elif key == 'recycle': - assert isinstance(value, bool), "recycle must be a bool" - else: - raise ValueError(f"Key '{key}' not understood. See self._options for allowed keys.") - - def transpose(self, conjugate=False): - At = self._A.transpose(conjugate=conjugate) - solver = self._solver - options = self._options - return inverse(At, solver, **options) + @property + def solver(self): + return 'gmres' def solve(self, b, out=None): """