-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
137 lines (120 loc) · 5.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
''' Visualization code for point clouds and 3D bounding boxes with mayavi.
Ref: https://github.com/hengck23/didi-udacity-2017/blob/master/baseline-04/kitti_data/draw.py
'''
import numpy as np
import mayavi.mlab as mlab
def draw_lidar(pc,
color=None,
fig=None,
bgcolor=(0, 0, 0),
pts_scale=0.3,
pts_mode='sphere',
pts_color=None,
color_by_intensity=False,
pc_label=False):
''' Draw lidar points
Args:
pc: numpy array (n,3) of XYZ
color: numpy array (n) of intensity or whatever
fig: mayavi figure handler, if None create new one otherwise will use it
Returns:
fig: created or used fig
'''
pts_mode = 'point'
if fig is None:
fig = mlab.figure(figure=None, bgcolor=bgcolor,
fgcolor=None, engine=None, size=(1600, 1000))
if color is None:
color = pc[:, 2]
if pc_label:
color = pc[:, 4]
if color_by_intensity:
color = pc[:, 2]
mlab.points3d(pc[:, 0], pc[:, 1], pc[:, 2], color, color=pts_color,
mode=pts_mode, colormap='gnuplot', scale_factor=pts_scale, figure=fig)
# draw origin
mlab.points3d(0, 0, 0, color=(1, 1, 1), mode='sphere', scale_factor=0.2)
# draw axis
axes = np.array([
[2., 0., 0., 0.],
[0., 2., 0., 0.],
[0., 0., 2., 0.],
], dtype=np.float64)
mlab.plot3d([0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]],
color=(1, 0, 0), tube_radius=None, figure=fig)
mlab.plot3d([0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]],
color=(0, 1, 0), tube_radius=None, figure=fig)
mlab.plot3d([0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]],
color=(0, 0, 1), tube_radius=None, figure=fig)
# draw fov (todo: update to real sensor spec.)
fov = np.array([ # 45 degree
[20., 20., 0., 0.],
[20., -20., 0., 0.],
], dtype=np.float64)
mlab.plot3d([0, fov[0, 0]], [0, fov[0, 1]], [0, fov[0, 2]], color=(
1, 1, 1), tube_radius=None, line_width=1, figure=fig)
mlab.plot3d([0, fov[1, 0]], [0, fov[1, 1]], [0, fov[1, 2]], color=(
1, 1, 1), tube_radius=None, line_width=1, figure=fig)
# draw square region
TOP_Y_MIN = -20
TOP_Y_MAX = 20
TOP_X_MIN = 0
TOP_X_MAX = 40
TOP_Z_MIN = -2.0
TOP_Z_MAX = 0.4
x1 = TOP_X_MIN
x2 = TOP_X_MAX
y1 = TOP_Y_MIN
y2 = TOP_Y_MAX
mlab.plot3d([x1, x1], [y1, y2], [0, 0], color=(0.5, 0.5, 0.5),
tube_radius=0.1, line_width=1, figure=fig)
mlab.plot3d([x2, x2], [y1, y2], [0, 0], color=(0.5, 0.5, 0.5),
tube_radius=0.1, line_width=1, figure=fig)
mlab.plot3d([x1, x2], [y1, y1], [0, 0], color=(0.5, 0.5, 0.5),
tube_radius=0.1, line_width=1, figure=fig)
mlab.plot3d([x1, x2], [y2, y2], [0, 0], color=(0.5, 0.5, 0.5),
tube_radius=0.1, line_width=1, figure=fig)
# mlab.orientation_axes()
mlab.view(azimuth=180, elevation=70, focalpoint=[
12.0909996, -1.04700089, -2.03249991], distance=62.0, figure=fig)
return fig
def draw_gt_boxes3d(gt_boxes3d, fig, color=(1, 1, 1), line_width=1, draw_text=False, text_scale=(1, 1, 1), color_list=None):
''' Draw 3D bounding boxes
Args:
gt_boxes3d: numpy array (n,8,3) for XYZs of the box corners
fig: mayavi figure handler
color: RGB value tuple in range (0,1), box line color
line_width: box line width
draw_text: boolean, if true, write box indices beside boxes
text_scale: three number tuple
color_list: a list of RGB tuple, if not None, overwrite color.
Returns:
fig: updated fig
'''
num = len(gt_boxes3d)
for n in range(num):
b = gt_boxes3d[n]
if color_list is not None:
color = color_list[n]
if draw_text:
mlab.text3d(b[4, 0], b[4, 1], b[4, 2], '%d' %
n, scale=text_scale, color=color, figure=fig)
for k in range(0, 4):
# http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
i, j = k, (k+1) % 4
mlab.plot3d([b[i, 0], b[j, 0]], [b[i, 1], b[j, 1]], [
b[i, 2], b[j, 2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
i, j = k+4, (k+1) % 4 + 4
mlab.plot3d([b[i, 0], b[j, 0]], [b[i, 1], b[j, 1]], [
b[i, 2], b[j, 2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
i, j = k, k+4
mlab.plot3d([b[i, 0], b[j, 0]], [b[i, 1], b[j, 1]], [
b[i, 2], b[j, 2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
# mlab.show(1)
#mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig)
return fig
if __name__ == '__main__':
pc = np.loadtxt('mayavi/kitti_sample_scan.txt')
fig = draw_lidar(pc)
mlab.savefig('pc_view.jpg', figure=fig)
input()