From c2cb8fda59ca04f9cd2d26a3997d5a16edb59d4c Mon Sep 17 00:00:00 2001 From: Pierre Roux Date: Wed, 31 Jan 2024 21:00:19 +0100 Subject: [PATCH] Adapt to https://github.com/coq/coq/pull/18590 --- theories/kat.v | 6 +++--- theories/lattice.v | 2 +- theories/monoid.v | 6 +++--- theories/relalg.v | 24 ++++++++++++------------ 4 files changed, 19 insertions(+), 19 deletions(-) diff --git a/theories/kat.v b/theories/kat.v index d22f76f..2bd43c2 100644 --- a/theories/kat.v +++ b/theories/kat.v @@ -41,7 +41,7 @@ Notation " [ p ] " := (inj p): ra_terms. injection should be a morphism of idempotent semirings, i.e, map [(leq,weq,cap,cup,top,bot)] into [(leq,weq,dot,pls,one,zer)] *) -(* TOTHINK: voir si on laisse les deux instances :>, +(* TOTHINK: voir si on laisse les deux instances ::, qui ne sont utiles que dans l'abstrait si les structures concrètes sont déclarées incrémentalement voir aussi s'il ne vaut pas mieux poser ces deux instances en @@ -50,8 +50,8 @@ Notation " [ p ] " := (inj p): ra_terms. TODO: relacher les contraintes sur les niveaux *) Class laws (X: ops) := { - kar_BKA:> monoid.laws BKA kar; - tst_BL:> forall n, lattice.laws BL (tst n); + kar_BKA:: monoid.laws BKA kar; + tst_BL:: forall n, lattice.laws BL (tst n); mor_inj: forall n, morphism BSL (@inj X n); inj_top: forall n, [top] ≡ one n; inj_cap: forall n (p q: tst n), [p ⊓ q] ≡ [p] ⋅ [q] diff --git a/theories/lattice.v b/theories/lattice.v index 206f322..328d320 100644 --- a/theories/lattice.v +++ b/theories/lattice.v @@ -94,7 +94,7 @@ Notation "! x" := (neg x) (right associativity, at level 20, format "! x"): ra_t typeclass resolution. *) Class laws (l: level) (X: ops) := { - leq_PreOrder:> PreOrder leq; + leq_PreOrder:: PreOrder leq; weq_spec : forall x y , x ≡ y <-> x ≦ y /\ y ≦ x; cup_spec {Hl:CUP ≪ l}: forall x y z, x ⊔ y ≦ z <-> x ≦ z /\ y ≦ z; cap_spec {Hl:CAP ≪ l}: forall x y z, z ≦ x ⊓ y <-> z ≦ x /\ z ≦ y; diff --git a/theories/monoid.v b/theories/monoid.v index e57a2ab..f15e399 100644 --- a/theories/monoid.v +++ b/theories/monoid.v @@ -96,7 +96,7 @@ Unset Strict Implicit. typeclass resolution. *) Class laws (l: level) (X: ops) := { - lattice_laws:> forall n m, lattice.laws l (X n m); + lattice_laws:: forall n m, lattice.laws l (X n m); (** po-monoid laws *) dotA: forall n m p q (x: X n m) y (z: X p q), x⋅(y⋅z) ≡ (x⋅y)⋅z; dot1x: forall n m (x: X n m), 1⋅x ≡ x; @@ -110,7 +110,7 @@ Class laws (l: level) (X: ops) := { (** converse laws *) cnvdot_ `{CNV ≪ l}: forall n m p (x: X n m) (y: X m p), (x⋅y)° ≦ y°⋅x°; cnv_invol `{CNV ≪ l}: forall n m (x: X n m), x°° ≡ x; - cnv_leq `{CNV ≪ l}:>forall n m, Proper (leq ==> leq) (cnv n m); + cnv_leq `{CNV ≪ l}::forall n m, Proper (leq ==> leq) (cnv n m); cnv_ext_ `{CNV ≪ l}: CAP ≪ l \/ forall n m (x: X n m), x ≦ x⋅x°⋅x; (** star laws *) str_refl `{STR ≪ l}: forall n (x: X n n), 1 ≦ x^*; @@ -456,7 +456,7 @@ Proof. dual @Schroeder_l. Qed. (** * Functors (i.e., monoid morphisms) *) Class functor l {X Y: ops} (f': ob X -> ob Y) (f: forall {n m}, X n m -> Y (f' n) (f' m)) := { - fn_morphism:> forall n m, morphism l (@f n m); + fn_morphism:: forall n m, morphism l (@f n m); fn_dot: forall n m p (x: X n m) (y: X m p), f (x⋅y) ≡ f x ⋅ f y; fn_one: forall n, f (one n) ≡ 1; fn_itr `{STR ≪ l}: forall n (x: X n n), f (x^+) ≡ (f x)^+; diff --git a/theories/relalg.v b/theories/relalg.v index f3295e8..3ea8180 100644 --- a/theories/relalg.v +++ b/theories/relalg.v @@ -66,30 +66,30 @@ Class is_total n m (x: X n m) := total: 1 ≦ x ⋅ x°. Class is_vector n m (v: X n m) := vector: v⋅top ≡ v. Class is_point n m (p: X n m) := { - point_vector:> is_vector p; - point_injective:> is_injective p; - point_nonempty:> is_nonempty p}. + point_vector:: is_vector p; + point_injective:: is_injective p; + point_nonempty:: is_nonempty p}. Class is_atom n m (a: X n m) := { a_top_a': a⋅top⋅a° ≦ 1; a'_top_a: a°⋅top⋅a ≦ 1; - atom_nonempty:> is_nonempty a}. + atom_nonempty:: is_nonempty a}. Class is_mapping n m (f: X n m) := { - mapping_univalent:> is_univalent f; - mapping_total:> is_total f}. + mapping_univalent:: is_univalent f; + mapping_total:: is_total f}. Class is_per n (e: X n n) := { - per_symmetric:> is_symmetric e; - per_transitive:> is_transitive e}. + per_symmetric:: is_symmetric e; + per_transitive:: is_transitive e}. Class is_preorder n (p: X n n) := { - pre_reflexive:> is_reflexive p; - pre_transitive:> is_transitive p}. + pre_reflexive:: is_reflexive p; + pre_transitive:: is_transitive p}. Class is_order n (p: X n n) := { - ord_preorder:> is_preorder p; - ord_antisymmetric:> is_antisymmetric p}. + ord_preorder:: is_preorder p; + ord_antisymmetric:: is_antisymmetric p}. Context {L: laws l X}.