Skip to content

Latest commit

 

History

History
60 lines (57 loc) · 1.55 KB

README.md

File metadata and controls

60 lines (57 loc) · 1.55 KB

Azure ML

We talk about Machine Learning on Azure and forecast analysis with python and jupyter notebook.

Agenda

  1. Presentation 🕥 (10:30)
    • Who Is Proge-Software
    • Who Am I
  2. Introduction (10:45)
    • Python
      • Pandas
      • NumPy
      • Matplotlib
      • Seaborn
      • Scikit-learn
    • Jupyter Notebook
    • Anaconda
    • Machine Learning
      • Supervised Learning
      • Unsupervised Learning
      • Reinforcement learning
    • Preprocessing data
    • Forecast Analysis
      • ARIMA: Autoregressive integrated moving average
      • Prophet
  3. Azure Machine Learning Studio 🕦 (11:30)
    • What is Azure ML Studio
      • Differences with Classic version of the platform
    • Why do we need it
    • How does it work
      • Compute
        • Compute Instances
        • Compute Clusters
        • Inference Clusters
        • Attached Compute
      • Storage
      • Notebooks
      • Work with Computes
        • JupyterLab
        • Command Line
  4. Demo 🕛 (12:00)
    • Setup Azure ML Studio
    • Data
      • Preprocessing the Data
      • Code explanation
    • Spot and treat outliers
    • Train a Prophet model
    • Model evaluation
    • Hyperparameter tuning
  5. Where to go next (12:20)
    • Artificial Neural Networks
    • Deep Learning
    • Frameworks for deep learning
      • Tensorflow
      • Keras
      • PyTorch
    • Types of Neural Network
    • NeuralProphet
  6. Q&A (12:25)