-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathMain.py
115 lines (83 loc) · 4.66 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
'''
Project: Handwritten Digit Recognizer Using Softmax Regression
Author: Priyanka Kasture | pkasture2010@gmail.com
-> Live Webcam Support Only
-> Algorithms:
1. Softmax Regression - Multi-class Classification [0 to 9 i.e 10 classes]
2. Gradient Descent - Optimization
3. Back-Propagation - Adjustment of the weights by calculating the gradient of the loss function
-> Training accuracy percentage: 91.91
-> Testing accuracy percentage: 92.85
'''
''' Importing Libraries '''
import numpy as np
import inputs
import cv2
import Softmax_Reg
''' Our operations on the frame come here '''
def OnFrameOperations(img):
x, y, w, h = 0, 0, 300, 300
# Converting the captured picture to gray-scale image and storing it into another variable named 'gray'
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Using the Gaussian Kerel for bluring the edges, removing noises, and removing high frequency content
blur = cv2.GaussianBlur(gray, (35, 35), 0)
# If pixel value is greater than a threshold value, it is assigned one value, else it is assigned another value.
# Here THRESH_BINARY_INV is used, that means the background will appear - black and the potential digit - white
# THRESH_OTSU is used to calculate the threshold of bimodal images, or images whose histogram has two peaks
ret, thresh1 = cv2.threshold(blur, 70, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
thresh1 = thresh1[y:y + h, x:x + w]
# cv2.findContours function gives us a list of contours that it has found
# cv2.RETR_TREE tells OpenCV to compute the hierarchy (relationship) between contours
# We tell OpenCV to compress the contours to save space using cv2.CV_CHAIN_APPROX_SIMPLE
contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
return img, contours, thresh1
''' The main function '''
def main():
'''Placeholders for Training Sets'''
mnist = inputs.read_data_sets("MNIST_data/", one_hot=False)
data = mnist.train.next_batch(8000) # randomly picking 8000 samples from the MNIST dataset
# Function returns 'data' which is a tuple of two elements; containing flattened images [0] and their corresponding labels [1]
train_x = data[0] # Flattened Images
Y = data[1] # labels, actual numbers, vector
train_y = (np.arange(np.max(Y) + 1) == Y[:, None]).astype(int) # encoded array
'''Placeholders for Testing Sets'''
mnist = inputs.read_data_sets("MNIST_data/", one_hot=False)
tb = mnist.train.next_batch(2000)
Y_test = tb[1]
X_test = tb[0]
directory = Softmax_Reg.model(train_x.T, train_y.T, Y, X_test.T, Y_test, num_iters=2000, alpha=0.07, print_cost=True)
# Returns a dictionary of Costs, Weights and Biases recorded after each Iteration
weights = directory["w"] # Final Weights
biases = directory["b"] # Final Biases
''' WebCam Support '''
''' Creating a VideoCapture object. Its argument can be either the device index or the name of a video file '''
cap = cv2.VideoCapture(0)
while (cap.isOpened()):
# Capturing frame-by-frame
ret, img = cap.read()
img, contours, thresh = OnFrameOperations(img)
answer = ''
if len(contours) > 0:
contour = max(contours, key=cv2.contourArea)
if cv2.contourArea(contour) > 2500:
x, y, w, h = cv2.boundingRect(contour)
Captured_Image = thresh[y:y + h, x:x + w]
# Resizing the captured image into 28X28
Captured_Image = cv2.resize(Captured_Image, (28, 28))
# Converting the captured image into a numpy array
Captured_Image = np.array(Captured_Image)
# Flattening the captured image
Captured_Image = Captured_Image.flatten()
Captured_Image = Captured_Image.reshape(Captured_Image.shape[0], 1)
answer = Softmax_Reg.predict(weights, biases, Captured_Image)
x, y, w, h = 0, 0, 300, 300
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(img, "Predicted Digit is " + str(answer), (30, 320),cv2.FONT_HERSHEY_COMPLEX , 0.7, (0, 0, 255), 2)
# imshow - Displaying an images being captured in the specified window
# Parameters are 1 - Name of the Window and 2 - Image to be Shown
cv2.imshow("Window",img)
cv2.imshow("Contours",thresh)
k=cv2.waitKey(10)
if k==20:
break
main()