-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
121 lines (96 loc) · 4.64 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import time
import torch
import numpy as np
import torch.optim as optim
import torchbnn as bnn
from tqdm import tqdm
from sklearn.metrics import f1_score
from meta_fairness import equal_opp_binary, fair_loss_binary, avg_odds_binary, acc_diff_binary, disparate_impact_binary
from fairtorch_local import DemographicParityLoss, EqualiedOddsLoss
## Weights set manually using data distribution for Reweighing
## Make Sure to Change These Weights If Testing on a Different Dataset
def get_weights(labels, groups, dataset):
if dataset=='acsincome': # ACSIncome; Protected Class: Sex
reweigh_arr = [1.103221, 0.881572, 0.905575, 1.176071]
elif dataset=='acsemployment': # ACSEmployment; Protected Class: Sex
reweigh_arr = [1.066670, 0.930995, 0.943020, 1.077683]
elif dataset=='celeba': # CelebA
reweigh_arr = [0.866271, 1.201112, 1.125507, 0.892101]
weights = torch.ones(labels.size())
weights[torch.logical_and(labels==0, groups==0)] = reweigh_arr[0]
weights[torch.logical_and(labels==1, groups==0)] = reweigh_arr[1]
weights[torch.logical_and(labels==0, groups==1)] = reweigh_arr[2]
weights[torch.logical_and(labels==1, groups==1)] = reweigh_arr[3]
return weights
def train_mlp(model, trainloader, validloader, savefldr, args):
torch.manual_seed(0)
save_every_ite = True
if args.reweigh:
criterion = torch.nn.CrossEntropyLoss(reduction='none')
else:
criterion = torch.nn.CrossEntropyLoss()
dp_loss = EqualiedOddsLoss(sensitive_classes=[0, 1], alpha=args.lmbd)
kl_loss = bnn.BKLLoss(reduction='mean', last_layer_only=False)
kl_weight = 0.01
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
for epoch in tqdm(range(args.epochs)):
if save_every_ite and savefldr is not None:
torch.save(model, savefldr + '%d.pth' % epoch)
model.train()
torch.manual_seed(epoch)
for i, data in enumerate(trainloader, 0):
inputs, labels, groups = data
inputs, labels, groups = inputs.squeeze(), labels.squeeze(), groups.squeeze()
if args.cuda:
inputs, labels, groups = inputs.cuda(), labels.cuda(), groups.cuda()
optimizer.zero_grad()
outputs = model(inputs.float())
if args.loss=='ce':
loss = criterion(outputs, labels.long())
if args.reweigh:
weights = get_weights(labels, groups, args.dataset)
if args.cuda: weights = weights.cuda()
loss = torch.sum(loss * weights)/torch.sum(weights)
if 'bnn' in args.arch:
kl = kl_loss(model)
loss = loss + kl_weight*kl
elif args.loss=='fairce':
lossce = criterion(outputs, labels.long())
outprob = torch.nn.functional.softmax(outputs, dim=-1)[:, 1]
lossfair = dp_loss(inputs, outprob, groups, labels.long())
if torch.isnan(lossfair): loss = lossce
else: loss = lossce + lossfair
loss.backward()
optimizer.step()
# fscore, unfair_per = test_mlp(model, validloader, cuda=args.cuda)
## Use validloader results if required
if savefldr is not None:
torch.save(model, savefldr + 'final.pth')
torch.manual_seed(int(time.time())) ## Reset Seed. This is important when training multiple models in succession
return model
def test_mlp(model, testloader, cuda=True, fairness_criteria='eqopp'):
model.eval()
label_arr, pred_arr, group_arr = [], [], []
with torch.no_grad():
for data in testloader:
inputs, labels, groups = data
if cuda:
inputs, labels = inputs.cuda(), labels.cuda()
outputs = model(inputs.float())
_, predicted = torch.max(outputs.data, 1)
pred_arr.extend(predicted.cpu().detach().numpy())
label_arr.extend(labels.cpu().detach().numpy())
group_arr.extend(groups.cpu().detach().numpy())
label_arr = np.array(label_arr)
pred_arr = np.array(pred_arr)
group_arr = np.array(group_arr)
fscore = f1_score(label_arr, pred_arr, average='macro')
if fairness_criteria=='eqopp':
unfair_per = equal_opp_binary(group_arr, label_arr, pred_arr)
elif fairness_criteria=='avgodds':
unfair_per = avg_odds_binary(group_arr, label_arr, pred_arr)
elif fairness_criteria=='accdiff':
unfair_per = acc_diff_binary(group_arr, label_arr, pred_arr)
elif fairness_criteria=='disimp':
unfair_per = disparate_impact_binary(group_arr, label_arr, pred_arr)
return fscore*100, unfair_per*100