-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_celeba.py
34 lines (28 loc) · 1.11 KB
/
preprocess_celeba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from torchvision import models, transforms
from PIL import Image
import os
import torch
from tqdm import tqdm
import numpy as np
model = models.resnet50(pretrained=True)
model_feat = torch.nn.Sequential(*list(model.children())[:-1])
model_feat.eval()
# os.environ["CUDA_VISIBLE_DEVICES"] = '0' ## Select a subset of GPUs if needed
model_feat.cuda()
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)])
root_dir = 'data/celebA/img_align_celeba/'
os.makedirs(root_dir + 'feat_align_celeba/', exist_ok=True)
for filename in tqdm(os.listdir(root_dir + 'img_align_celeba/')):
img = Image.open(root_dir + 'img_align_celeba/' + filename).convert('RGB')
img_preprocessed = preprocess(img).cuda()
batch_img_tensor = torch.unsqueeze(img_preprocessed, 0)
out = model_feat(batch_img_tensor).cpu().detach().numpy()
with open(root_dir + 'feat_align_celeba/' + filename[:-3] + 'npy', 'wb') as f:
np.save(f, out.squeeze())