diff --git a/applications/corrosion/corrosion.pdf b/applications/corrosion/corrosion.pdf index 1944fe86b..5643cae36 100644 Binary files a/applications/corrosion/corrosion.pdf and b/applications/corrosion/corrosion.pdf differ diff --git a/applications/corrosion/tex_files/corrosion.pdf b/applications/corrosion/tex_files/corrosion.pdf index 1944fe86b..5643cae36 100644 Binary files a/applications/corrosion/tex_files/corrosion.pdf and b/applications/corrosion/tex_files/corrosion.pdf differ diff --git a/applications/corrosion/tex_files/corrosion.tex b/applications/corrosion/tex_files/corrosion.tex index c8d4afc1f..4c7c162ef 100644 --- a/applications/corrosion/tex_files/corrosion.tex +++ b/applications/corrosion/tex_files/corrosion.tex @@ -239,7 +239,7 @@ \section{Governing Equations} \end{equation} \noindent where $c_i =c_M, c_+$ and $\Phi$ is the electrostatic potential. The last term of the right hand side of Eq. \eqref{conc_dynamics} is zero for $c_i =c_+$ because $i_{rxn}$ is the reaction current density for the dissolution of the metal (M), which does not involve the supporting cation (+) and anion (-). The SBM reformulated governing equation for the potential is \begin{equation} -\nabla \cdot (\psi \kappa \nabla \Phi) = F \nabla \cdot \left[ \psi \left( z_M (D_- - D_M) \nabla c_M + z_+ (D_- - D_+) \nabla c_+ \right) \right] + |\nabla \psi | i_{rxn}, +\nabla \cdot (\psi \kappa \nabla \Phi) = F \nabla \cdot \left[ \psi \left( z_M (D_- - D_M) \nabla c_M + z_+ (D_- - D_+) \nabla c_+ \right) \right] - |\nabla \psi | i_{rxn}, \end{equation} where \begin{equation}