-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvisualize.py
163 lines (152 loc) · 4.29 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import sys
import tensorflow as tf
import numpy as np
sys.path.insert(0, './')
sys.path.insert(0, './unity/')
sys.path.insert(0, './stable-baselines/')
from packing.packing_policy import PackingPolicy, sha_pol
from packing.packing_env import PackingEnv, mul_pro_packing_env
from packing.packing_evalute import evaluate, get_file_id_lst
from packing.packing_heuristic import HeuristicModel, sha_lar, mov_best, rot_best, rot_best_pos
from packing.packing_runner import RunnerBackTrackSearch
# create the tf model and loads the weights
rot_before_mov = True
tf_model_path = "log/200_1.0_0.95_1e-05_0_0.5_0.1_8_4_1_0_1_1/PPO2_1/model_va"
policy_config = {
'rot_before_mov': rot_before_mov,
'add_bn':False,
'add_sum_fea':True,
'policy_weights':[1.0, 1.0, 1.0],
'fixed_fea_config':{
'box_fea_dim':10,
'cho_sha_coarse_fea_dim':8,
'cho_sha_fine_fea_dim':8
},
'comp_pol_config':{
'sha_pol':sha_pol,
'mov_pol':None,
'rot_pol':None
}
}
tf_config = tf.ConfigProto(
allow_soft_placement=True)
sess = tf.Session(config=tf_config)
model = PackingPolicy(
sess=sess,
reuse=False,
**policy_config
)
tf.global_variables_initializer().run(session=sess)
tf.train.Saver().restore(sess, tf_model_path)
if rot_before_mov:
model_oracle = HeuristicModel(
sha_lar,
rot_best,
mov_best)
else:
model_oracle = HeuristicModel(
sha_lar,
mov_best,
rot_best_pos)
n_envs = 1
pack_file_name = [ "pack_va/" + str(i) + "_va" for i in range(0, 130)]
env_name = 'unity/envs/packit'
file_id_lst = get_file_id_lst(
env_name=env_name,
pack_file_name=pack_file_name)
# runs the groundtruth actions for the particular file_id and saves the shapes
def save_actions_gt(id_to_check):
file_id = file_id_lst[id_to_check]
print(file_id)
env_param = {
'num_pro': 1,
'env_name': env_name,
'file_id_lst_lst': [[file_id]],
'rot_before_mov': rot_before_mov,
'shuffle': False,
'get_gt': True,
'worker_id_start': 500,
'config': {
'sha': None,
'mov': None,
'rot': None
},
'save_actions': True,
'save_action_path': 'data/visualize/{}_{}_gt'
}
env = mul_pro_packing_env(**env_param)
obs = env.reset()
reward = 0
while True:
act = env.get_gt_action()
obs, _reward, done, _ = env.step(act.tolist())
reward += _reward
if done[0]:
print(reward)
del env
break
def save_actions_le(id_to_check):
file_id = file_id_lst[id_to_check]
print(file_id)
env_param = {
'num_pro': 1,
'env_name': env_name,
'file_id_lst_lst': [[file_id]],
'rot_before_mov': rot_before_mov,
'shuffle': False,
'get_gt': False,
'worker_id_start': 500,
'config': {
'sha': None,
'mov': model_oracle.action_best,
'rot': model_oracle.action_best
},
'save_actions': True,
'save_action_path': 'data/visualize/{}_{}_le'
}
env = mul_pro_packing_env(**env_param)
obs = env.reset()
reward = 0
while True:
act = model.action_best(obs)
obs, _reward, done, _ = env.step(act.tolist())
reward += _reward
if done[0]:
print(reward)
del env
break
def save_actions_he(id_to_check):
file_id = file_id_lst[id_to_check]
print(file_id)
env_param = {
'num_pro': 1,
'env_name': env_name,
'file_id_lst_lst': [[file_id]],
'rot_before_mov': rot_before_mov,
'shuffle': False,
'get_gt': False,
'worker_id_start': 500,
'config': {
'sha': None,
'mov': None,
'rot': None
},
'save_actions': True,
'save_action_path': 'data/visualize/{}_{}_he'
}
env = mul_pro_packing_env(**env_param)
obs = env.reset()
reward = 0
while True:
act = model_oracle.action_best(obs)
obs, _reward, done, _ = env.step(act.tolist())
reward += _reward
if done[0]:
print(reward)
del env
break
for i in range(0, 100, 1):
save_actions_gt(i)
save_actions_he(i)
save_actions_le(i)