-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcommands.py
87 lines (75 loc) · 3.64 KB
/
commands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import itertools
# he: heuristic, le: learning, tab: table, tr: train, ev: eval
command = {
# Figure 4
'fig_4': 'python ablation.py',
# evaluate the heuristic models
'he_tab_1_row_1': 'python main_heuristic.py --eval_va_or_te 0'\
' --pol_1 sha_rand',
'he_tab_1_row_2': 'python main_heuristic.py --eval_va_or_te 0'\
' --pol_2 rot_rand',
'he_tab_1_row_3': 'python main_heuristic.py --eval_va_or_te 0'\
' --pol_3 mov_rand',
'he_tab_1_row_4': 'python main_heuristic.py --eval_va_or_te 0',
'he_tab_4_row_2': 'python main_heuristic.py --eval_va_or_te 0'\
' --rot_before_mov 0 --pol_2 mov_best'\
' --pol_3 rot_best_pos',
# train the learning based model
'tr_le_tab_1_row_5': 'python main.py --id_start 10 --learn_or_evaluate 1',
# evaluate the learning based model
'ev_le_tab_1_row_5': 'python main.py --id_start 0 --learn_or_evaluate 0'\
' --eval_va_or_te 0',
# train the learning based model on PackIt Easy
'tr_le_tab_4_row_5': 'python main.py --id_start 20 --learn_or_evaluate 1'\
' --rot_before_mov 0',
# evaluate the learning based model trained on PackIt
# and tested on PackIt-Easy
'ev_le_tab_4_row_4': 'python main.py --id_start 0 --learn_or_evaluate 0'\
' --eval_va_or_te 0 --rot_before_mov_env 0',
# evaluate the learning based model trained on PackIt-Easy and
# tested on PackIt-Easy
'ev_le_tab_4_row_5': 'python main.py --id_start 0 --learn_or_evaluate 0'\
' --eval_va_or_te 0 --rot_before_mov 0',
# heuristic with backtracks
'he_tab_2_row_2_4': [
'python main_heuristic.py --eval_va_or_te 0 --id_start {}'\
' --result_folder results/he_bts'\
' --pol_1 sha_all_sorted --pol_2 None --pol_3 None'\
' --back_track_search 1 --budget {}'\
' --eval_start_id {} --eval_end_id {}'.format(
(10 * j) + (1000 * _i), i, j, j+10)\
for (_i, i), j in itertools.product(enumerate([2, 4, 8]),
list(range(0, 100, 10)))
],
# heuristic with beam
'he_tab_3_row_2_3': [
'python main_heuristic.py --eval_va_or_te 0 --id_start {}'\
' --result_folder results/he_bes'\
' --pol_1 sha_lar_n --pol_2 None --pol_3 None'\
' --beam_search 1 --beam_size {}'\
' --eval_start_id {} --eval_end_id {}'.format(
3000 + (10 * j) + (1000 * _i), i, j, j+10)\
for (_i, i), j in itertools.product(enumerate([2, 4]),
list(range(0, 100, 10)))
],
# evaluate the learning based model with beam
'le_tab_2_row_6_8': [
'python main.py --eval_va_or_te 0 --id_start {}'\
' --result_folder results/le_bts --learn_or_evaluate 0'\
' --back_track_search 1 --budget {}'\
' --eval_start_id {} --eval_end_id {}'.format(
(10 * j) + (1000 * _i), i, j, j+10)\
for (_i, i), j in itertools.product(enumerate([2, 4, 8]),
list(range(0, 100, 10)))
],
# evaluate the learning based model with beam
'le_tab_3_row_5_6': [
'python main.py --eval_va_or_te 0 --id_start {}'\
' --result_folder results/le_bes --learn_or_evaluate 0'\
' --beam_search 1 --beam_size {}'\
' --eval_start_id {} --eval_end_id {}'.format(
3000 + (10 * j) + (1000 * _i), i, j, j+10)\
for (_i, i), j in itertools.product(enumerate([2, 4]),
list(range(0, 100, 10)))
],
}