-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_vo.py
197 lines (153 loc) · 6.45 KB
/
train_vo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
from collections import OrderedDict
from itertools import count
from pathlib import Path
import cv2
import gin
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from multi_slam.dpvo.data_readers.factory import dataset_factory
from multi_slam.dpvo.lietorch import SE3
from multi_slam.locnet import LocNet
from multi_slam.dpvo.logger import Logger
from eval_tartan import validate
def show_image(image):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey()
def image2gray(image):
image = image.mean(dim=0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey()
def kabsch_umeyama(A, B):
n, m = A.shape
EA = torch.mean(A, axis=0)
EB = torch.mean(B, axis=0)
VarA = torch.mean((A - EA).norm(dim=1)**2)
H = ((A - EA).T @ (B - EB)) / n
U, D, VT = torch.svd(H)
c = VarA / torch.trace(torch.diag(D))
return c
def train(args):
""" main training loop """
# legacy ddp code
rank = 0
db = dataset_factory(['tartan'], datapath="datasets/TartanAir", n_frames=args.n_frames)
train_loader = DataLoader(db, batch_size=1, shuffle=True, num_workers=4)
# net = VONet()
# net.train()
# net.cuda()
net = LocNet()
net.cuda()
assert net.training
optimizer = torch.optim.AdamW(net.parameters(), lr=args.lr, weight_decay=1e-6)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
args.lr, args.steps, pct_start=0.01, cycle_momentum=False, anneal_strategy='linear')
if args.ckpt is not None:
states = torch.load(args.ckpt)
net.load_state_dict(states["model"])
optimizer.load_state_dict(states["optimizer"])
scheduler.load_state_dict(states["scheduler"])
print("Loaded checkpoint")
if rank == 0:
logger = Logger(args.name, scheduler, ["Locnet"], args)
print("Setup complete")
total_steps = 0
for epoch in count(1):
for item_idx, data_blob in enumerate(train_loader):
if item_idx == 0:
print("Inner training loop began")
images, poses, disps, intrinsics = [x.cuda().float() for x in data_blob]
optimizer.zero_grad()
# fix poses to gt for first 1k steps
so = total_steps < 1000 and args.ckpt is None
poses = SE3(poses).inv()
traj = net.vo_forward(images, poses, disps, intrinsics, M=80, STEPS=18, structure_only=so)
loss = 0.0
for i, (v, x, y, P1, P2, kl) in enumerate(traj):
e = (x - y).norm(dim=-1) * 2
e = e.reshape(-1, net.P**2)[(v > 0.5).reshape(-1)].min(dim=-1).values
N = P1.shape[1]
ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N), indexing='ij')
ii = ii.reshape(-1).cuda()
jj = jj.reshape(-1).cuda()
k = ii != jj
ii = ii[k]
jj = jj[k]
P1 = P1.inv()
P2 = P2.inv()
t1 = P1.matrix()[...,:3,3]
t2 = P2.matrix()[...,:3,3]
loss += args.flow_weight * e.mean()
try:
s = kabsch_umeyama(t2[0], t1[0]).detach().clamp(max=10.0)
P1 = P1.scale(s.view(1, 1))
dP = P1[:,ii].inv() * P1[:,jj]
dG = P2[:,ii].inv() * P2[:,jj]
e1 = (dP * dG.inv()).log()
tr = e1[...,0:3].norm(dim=-1)
ro = e1[...,3:6].norm(dim=-1)
if not so and i >= 2:
loss += args.pose_weight * ( tr.mean() + ro.mean() )
except:
print(f"kabsch_umeyama failed {i=}")
tr, ro = torch.tensor([1000, np.pi])
# kl is 0 (not longer used)
loss += kl
loss.backward()
try:
torch.nn.utils.clip_grad_norm_(net.parameters(), args.clip, error_if_nonfinite=True)
except Exception as e:
print(f"{e}\nBAD GRADIENT. Reloading model and optimizer.")
optimizer.zero_grad()
net.load_state_dict(state["model"])
optimizer.load_state_dict(state["optimizer"])
continue
optimizer.step()
scheduler.step()
total_steps += 1
metrics = {
"loss": loss.item(),
"kl": kl.item(),
"px1": (e < .25).float().mean().item(),
"ro": ro.float().mean().item(),
"tr": tr.float().mean().item(),
"r1": (ro < .001).float().mean().item(),
"r2": (ro < .01).float().mean().item(),
"t1": (tr < .001).float().mean().item(),
"t2": (tr < .01).float().mean().item(),
}
if rank == 0:
logger.push(metrics)
if total_steps % 10000 == 0:
torch.cuda.empty_cache()
if rank == 0:
PATH = 'checkpoints/%s_%06d.pth' % (args.name, total_steps)
state = {"optimizer": optimizer.state_dict(), "scheduler": scheduler.state_dict(), "model": net.state_dict()}
torch.save(state, PATH)
validation_results = validate(net)
validation_results = {f"Validation/{key}":val for key,val in validation_results.items()}
if rank == 0:
logger.write_dict(validation_results)
torch.cuda.empty_cache()
net.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', help='name your experiment')
parser.add_argument('--ckpt', help='checkpoint to restore')
parser.add_argument('--steps', type=int, default=240000)
parser.add_argument('--lr', type=float, default=0.00008)
parser.add_argument('--clip', type=float, default=10.0)
parser.add_argument('--n_frames', type=int, default=15)
parser.add_argument('--pose_weight', type=float, default=10.0)
parser.add_argument('--flow_weight', type=float, default=0.1)
args = parser.parse_args()
gconfigs = [next(iter(Path('gconfigs').rglob(g)), None) for g in (["model.gin", "fullsystem.gin"] + [])]
assert all(gconfigs)
gin.parse_config_files_and_bindings(gconfigs, [])
print(f"{args.name=}")
train(args)