-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproductOfArrayExpextSelf.py
61 lines (42 loc) · 1.61 KB
/
productOfArrayExpextSelf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Product of Array Except Self
# Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i].
# The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
# You must write an algorithm that runs in O(n) time and without using the division operation.
# Example 1:
# Input: nums = [1,2,3,4]
# Output: [24,12,8,6]
# Example 2:
# Input: nums = [-1,1,0,-3,3]
# Output: [0,0,9,0,0]
# My Solution
# class Solution(object):
# def productExceptSelf(self, nums):
# productArray = []
# for i in nums:
# a = 1
# for j in nums:
# if j != i:
# a = a * j
# productArray.append(a)
# return productArray
def product_except_self(nums):
n = len(nums)
# Initialize left and right arrays to store products on the left and right of each element
left_products = [1] * n
right_products = [1] * n
# Calculate left products
left_product = 1
for i in range(1, n):
print(i)
left_product *= nums[i - 1]
left_products[i] = left_product
# Calculate right products
right_product = 1
for i in range(n - 2, -1, -1):
right_product *= nums[i + 1]
right_products[i] = right_product
# Calculate the final result by multiplying left and right products
result = [left_products[i] * right_products[i] for i in range(n)]
return result
nums1 = [1, 2, 3, 4]
print(product_except_self(nums1))