-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
598 lines (530 loc) · 22.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
from torch.utils.data import DataLoader
import torch
from torch.distributions.normal import Normal
import numpy as np
import os
from collections import OrderedDict
import pywt
import pandas as pd
import re
import time
import shutil
from tsmoothie.smoother import SpectralSmoother, ExponentialSmoother
from statsmodels.tsa.seasonal import seasonal_decompose
import time
from data.synthetic_dataset import create_synthetic_dataset, create_sin_dataset, SyntheticDataset
from data.real_dataset import parse_ett, parse_Solar, parse_etthourly, parse_aggtest, parse_electricity, parse_foodinflation, parse_foodinflationmonthly
to_float_tensor = lambda x: torch.FloatTensor(x.copy())
to_long_tensor = lambda x: torch.FloatTensor(x.copy())
def copy_and_overwrite(from_path, to_path):
if os.path.exists(to_path):
shutil.rmtree(to_path)
shutil.copytree(from_path, to_path)
def clean_trial_checkpoints(result):
for trl in result.trials:
trl_paths = result.get_trial_checkpoints_paths(trl,'metric')
for path, _ in trl_paths:
shutil.rmtree(path)
def add_metrics_to_dict(
metrics_dict, model_name, metric_mse, metric_dtw, metric_tdi, metric_crps, metric_mae,
metric_smape
):
#if model_name not in metrics_dict:
# metrics_dict[model_name] = dict()
metrics_dict['mse'] = metric_mse
metrics_dict['dtw'] = metric_dtw
metrics_dict['tdi'] = metric_tdi
metrics_dict['crps'] = metric_crps
metrics_dict['mae'] = metric_mae
metrics_dict['smape'] = metric_smape
return metrics_dict
def add_base_metrics_to_dict(
metrics_dict, agg_method, K, model_name, metric_mse, metric_dtw, metric_tdi, metric_crps, metric_mae,
):
if agg_method not in metrics_dict:
metrics_dict[agg_method] = {}
if K not in metrics_dict[agg_method]:
metrics_dict[agg_method][K] = {}
if model_name not in metrics_dict[agg_method][K]:
metrics_dict[agg_method][K][model_name] = {}
metrics_dict[agg_method][K][model_name]['mse'] = metric_mse
metrics_dict[agg_method][K][model_name]['dtw'] = metric_dtw
metrics_dict[agg_method][K][model_name]['tdi'] = metric_tdi
metrics_dict[agg_method][K][model_name]['crps'] = metric_crps
metrics_dict[agg_method][K][model_name]['mae'] = metric_mae
#metrics_dict[model_name]['smape'] = metric_smape
return metrics_dict
def write_arr_to_file(
output_dir, inf_model_name, inputs, targets, pred_mu, pred_std, pred_d, pred_v
):
# Files are saved in .npy format
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_mu'), pred_mu)
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_std'), pred_std)
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_d'), pred_d)
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_v'), pred_v)
for fname in os.listdir(output_dir):
if fname.endswith('targets.npy'):
break
else:
np.save(os.path.join(output_dir, 'inputs'), inputs)
np.save(os.path.join(output_dir, 'targets'), targets)
def write_aggregate_preds_to_file(
output_dir, base_model_name, agg_method, level, inputs, targets, pred_mu, pred_std
):
# Files are saved in .npy format
sep = '__'
model_str = base_model_name + sep + agg_method + sep + str(level)
agg_str = agg_method + sep + str(level)
np.save(os.path.join(output_dir, model_str + sep + 'pred_mu'), pred_mu.detach().numpy())
np.save(os.path.join(output_dir, model_str + sep + 'pred_std'), pred_std.detach().numpy())
suffix = agg_str + sep + 'targets.npy'
for fname in os.listdir(output_dir):
if fname.endswith(suffix):
break
else:
np.save(os.path.join(output_dir, agg_str + sep + 'inputs'), inputs.detach().numpy())
np.save(os.path.join(output_dir, agg_str + sep + 'targets'), targets.detach().numpy())
class Normalizer(object):
def __init__(self, data, norm_type):
super(Normalizer, self).__init__()
self.norm_type = norm_type
self.N = len(data)
if norm_type in ['same']:
pass
elif norm_type in ['zscore_per_series']:
self.mean = map(lambda x: x.mean(0, keepdims=True), data) #data.mean(1, keepdims=True)
self.std = map(lambda x: x.std(0, keepdims=True), data) #data.std(1, keepdims=True)
#import ipdb ; ipdb.set_trace()
self.mean = torch.stack(list(self.mean), dim=0)
self.std = torch.stack(list(self.std), dim=0)
self.std = self.std.clamp(min=1., max=None)
elif norm_type in ['zeroshift_per_series']:
self.first = map(lambda x: x[0:1], data) #data.mean(1, keepdims=True)
self.std = map(lambda x: x.std(0, keepdims=True), data)
#import ipdb ; ipdb.set_trace()
self.first = torch.stack(list(self.first), dim=0)
self.std = torch.stack(list(self.std), dim=0)
self.std = self.std.clamp(min=1., max=None)
elif norm_type in ['min_per_series']:
self.first = map(lambda x: x.min(0, keepdims=True)[0], data)
self.std = map(lambda x: x.std(0, keepdims=True), data)
#import ipdb ; ipdb.set_trace()
self.first = torch.stack(list(self.first), dim=0)
self.std = torch.stack(list(self.std), dim=0)
self.std = self.std.clamp(min=1., max=None)
elif norm_type in ['log']:
pass
elif norm_type in ['gaussian_copula']:
ns = data.shape[1] * 1.
#self.delta = 1. / (4*np.power(ns, 0.25) * np.power(np.pi*np.log(ns), 0.5))
self.delta = 1e-5
data_sorted, indices = data.sort(1)
data_sorted_uq = torch.unique(data_sorted, sorted=True, dim=-1)
counts = torch.cat(
[(data_sorted == data_sorted_uq[:, i:i+1]).sum(dim=1, keepdims=True) for i in range(data_sorted_uq.shape[1])],
dim=1
)
#import ipdb; ipdb.set_trace()
self.x = data_sorted_uq
self.x = torch.cat([self.x, 1.1*data_sorted[..., -1:]], dim=1)
self.y = torch.cumsum(counts, 1)*1./data.shape[1]
self.y = self.y.clamp(self.delta, 1.0-self.delta)
self.y = torch.cat([self.y, torch.ones((data.shape[0], 1))*self.delta], dim=1)
self.m = (self.y[..., 1:] - self.y[..., :-1]) / (self.x[..., 1:] - self.x[..., :-1])
self.m = torch.maximum(self.m, torch.ones_like(self.m)*1e-4)
self.c = self.y[..., :-1]
#import ipdb; ipdb.set_trace()
def normalize(self, data, ids=None, is_var=False):
if ids is None:
ids = torch.arange(self.N)
if self.norm_type in ['same']:
data_norm = data
elif self.norm_type in ['zscore_per_series']:
if not is_var:
data_norm = (data - self.mean[ids]) / self.std[ids]
else:
data_norm = data / self.std[ids]
elif self.norm_type in ['zeroshift_per_series', 'min_per_series']:
if not is_var:
data_norm = (data - self.first[ids]) / self.std[ids]
else:
data_norm = data / self.std[ids]
elif self.norm_type in ['log']:
data_norm = torch.log(data)
elif self.norm_type in ['gaussian_copula']:
# Piecewise linear fit of CDF
indices = torch.searchsorted(self.x[ids], data).clamp(0, self.x.shape[-1])
m = torch.gather(self.m[ids], -1, indices)
c = torch.gather(self.c[ids], -1, indices)
x_prev = torch.gather(self.x[ids], -1, indices)
data_norm = (data - x_prev) * m + c
data_norm = data_norm.clamp(self.delta, 1.0-self.delta)
#import ipdb; ipdb.set_trace()
# ICDF in standard normal
dist = Normal(0., 1.)
data_norm = dist.icdf(data_norm)
#import ipdb; ipdb.set_trace()
return data_norm.unsqueeze(-1)
def unnormalize(self, data, ids=None, is_var=False):
#return data # TODO Watch this
if ids is None:
ids = torch.arange(self.N)
if self.norm_type in ['same']:
data_unnorm = data
elif self.norm_type in ['log']:
data_unnorm = torch.exp(data)
elif self.norm_type in ['zscore_per_series']:
if not is_var:
data_unnorm = data * self.std[ids] + self.mean[ids]
else:
data_unnorm = data * self.std[ids]
elif self.norm_type in ['zeroshift_per_series', 'min_per_series']:
if not is_var:
data_unnorm = data * self.std[ids] + self.first[ids]
else:
data_unnorm = data * self.std[ids]
elif self.norm_type in ['gaussian_copula']:
# CDF in standard normal
dist = Normal(0., 1.)
data = dist.cdf(data)
# Inverse piecewise linear fit of CDF
indices = torch.searchsorted(self.y[ids], data).clamp(0, self.x.shape[-1])
m = torch.gather(self.m[ids], -1, indices)
c = torch.gather(self.c[ids], -1, indices)
x_prev = torch.gather(self.x[ids], -1, indices)
data_unnorm = (data - c) / m + x_prev
return data_unnorm
sqz = lambda x: np.squeeze(x, axis=-1)
expand = lambda x: np.expand_dims(x, axis=-1)
def get_a(agg_type, K):
if K == 1:
return torch.ones(1, dtype=torch.float)
if agg_type in ['sum']:
a = 1./K * torch.ones(K)
elif agg_type in ['slope']:
x = torch.arange(K, dtype=torch.float)
m_x = x.mean()
s_xx = ((x-m_x)**2).sum()
a = (x - m_x) / s_xx
elif agg_type in ['diff']:
l = K // 2
a_ = torch.ones(K)
a = 1./K * torch.cat([-1.*a_[:l], a_[l:]], dim=0)
return a
def aggregate_window(y, a, is_var, v=None):
if is_var == False:
y_a = (a*y).sum(dim=1, keepdims=True)
else:
w_d = (a**2*y).sum(dim=1, keepdims=True)
if v is not None:
#w_v = (((a.unsqueeze(-1)*v).sum(-1)**2)).sum(dim=1, keepdims=True)
#av = a.unsqueeze(-1)*v
#av = torch.matmul(av, av.transpose(-2,-1))
#w_v = (((av).sum(-1)**2)).sum(dim=1, keepdims=True)
w_v = (((a.unsqueeze(-1)*v)**2).sum(-1)).sum(dim=1, keepdims=True)
y_a = w_d + w_v
else:
y_a = w_d
return y_a
def aggregate_data(y, agg_type, K, is_var, a=None, v=None):
# y shape: batch_size x N
# if a need not be recomputed in every call, pass a vector directly
# if v is not None, it is used as a V vector of low-rank multivariate gaussian
# v shape: batch_size x N x args.v_dim
bs, N = y.shape[0], y.shape[1]
if a is None:
a = get_a(agg_type, K)
a = a.unsqueeze(0).repeat(bs, 1)
y_agg = []
for i in range(0, N, K):
y_w = y[..., i:i+K]
if v is not None:
v_w = v[..., i:i+K, :]
y_a = aggregate_window(y_w, a, is_var, v=v_w)
else:
y_a = aggregate_window(y_w, a, is_var)
y_agg.append(y_a)
y_agg = torch.cat(y_agg, dim=1)#.unsqueeze(-1)
return y_agg
class TimeSeriesDataset(torch.utils.data.Dataset):
"""docstring for TimeSeriesDataset"""
def __init__(
self, data, enc_len, dec_len, feats_info, which_split,
tsid_map=None, input_norm=None, target_norm=None,
norm_type=None, feats_norms=None, train_obj=None
):
super(TimeSeriesDataset, self).__init__()
self.enc_len = enc_len
self.dec_len = dec_len
self.which_split = which_split
self.input_norm = input_norm
self.target_norm = target_norm
self.norm_type = norm_type
self.feats_info = feats_info
self.tsid_map = tsid_map
self.feats_norms = feats_norms
#self.train_obj = train_obj
st = time.time()
data_agg = []
for i in range(0, len(data)):
#print(i, len(data))
ex = data[i]['target']
ex_f = data[i]['feats']
ex_len = len(ex)
data_agg.append(
{
'target':ex,
'feats':ex_f,
}
)
et = time.time()
print(which_split, 'total time:', et-st)
if self.input_norm is None:
assert norm_type is not None
data_for_norm = []
for i in range(0, len(data)):
ex = data_agg[i]['target']
data_for_norm.append(torch.FloatTensor(ex))
#data_for_norm = to_float_tensor(data_for_norm).squeeze(-1)
self.input_norm = Normalizer(data_for_norm, norm_type=self.norm_type)
self.target_norm = self.input_norm
del data_for_norm
self.feats_norms = {}
for j in range(len(self.feats_info)):
card = self.feats_info[j][0]
if card == 0:
feat_for_norm = []
for i in range(0, len(data)):
ex = data_agg[i]['feats'][:, j]
feat_for_norm.append(torch.FloatTensor(ex))
f_norm = Normalizer(feat_for_norm, norm_type='zscore_per_series')
self.feats_norms[j] = f_norm
self.data = data_agg
self.indices = []
for i in range(0, len(self.data)):
if which_split in ['train']:
j = 0
while j < len(self.data[i]['target']):
if j + self.enc_len + self.dec_len <= len(self.data[i]['target']):
self.indices.append((i, j))
j += 1
elif which_split == 'dev':
j = len(self.data[i]['target']) - self.enc_len - self.dec_len
self.indices.append((i, j))
elif which_split == 'test':
j = len(self.data[i]['target']) - self.enc_len - self.dec_len
self.indices.append((i, j))
@property
def input_size(self):
#input_size = len(self.data[0]['target'][0])
input_size = 1
#if self.use_feats:
# # Multiplied by 2 because of sin and cos
# input_size += len(self.data[0]['feats'][0])
for idx, (card, emb) in self.feats_info.items():
if card != -1:
input_size += emb
return input_size
@property
def output_size(self):
#output_size = len(self.data[0]['target'][0])
output_size = 1
return output_size
def __len__(self):
return len(self.indices)
def __getitem__(self, idx):
#print(self.indices)
ts_id = self.indices[idx][0]
pos_id = self.indices[idx][1]
el = self.enc_len
dl = self.dec_len
ex_input = self.data[ts_id]['target'][ pos_id : pos_id+el ]
ex_target = self.data[ts_id]['target'][ pos_id+el : pos_id+el+dl ]
#print('after', ex_input.shape, ex_target.shape, ts_id, pos_id)
if self.tsid_map is None:
mapped_id = ts_id
else:
mapped_id = self.tsid_map[ts_id]
ex_input = self.input_norm.normalize(ex_input, mapped_id)#.unsqueeze(-1)
ex_target = self.target_norm.normalize(ex_target, mapped_id)#.unsqueeze(-1)
ex_input_feats = self.data[ts_id]['feats'][ pos_id : pos_id+el ]
ex_target_feats = self.data[ts_id]['feats'][ pos_id+el : pos_id+el+dl ]
ex_input_feats_norm = []
ex_target_feats_norm = []
for i in range(len(self.feats_info)):
if self.feats_norms.get(i, -1) != -1:
ex_input_feats_norm.append(self.feats_norms[i].normalize(
ex_input_feats[:, i], mapped_id)
)
ex_target_feats_norm.append(self.feats_norms[i].normalize(
ex_target_feats[:, i], mapped_id)
)
else:
ex_input_feats_norm.append(ex_input_feats[:, i:i+1])
ex_target_feats_norm.append(ex_target_feats[:, i:i+1])
ex_input_feats = torch.cat(ex_input_feats_norm, dim=-1)
ex_target_feats = torch.cat(ex_target_feats_norm, dim=-1)
#i_res = self.enc_len - len(ex_input)
#ex_input = torch.cat(
# [torch.zeros([i_res] + list(ex_input.shape[1:])), ex_input],
# dim=0
#)
#ex_input_feats = torch.cat(
# [torch.zeros([i_res] +list(ex_input_feats.shape[1:])), ex_input_feats],
# dim=0
#)
#print(ex_input.shape, ex_target.shape, ex_input_feats.shape, ex_target_feats.shape)
return (
ex_input, ex_target,
ex_input_feats, ex_target_feats,
mapped_id,
torch.FloatTensor([ts_id, pos_id])
)
def collate_fn(self, batch):
num_items = len(batch[0])
batched = [[] for _ in range(len(batch[0]))]
for i in range(len(batch)):
for j in range(len(batch[i])):
batched[j].append(torch.tensor(batch[i][j]))
batched_t = []
for i, b in enumerate(batched):
batched_t.append(torch.stack(b, dim=0))
#print(i)
#batched = [torch.stack(b, dim=0) for b in batched]
return batched_t
class DataProcessor(object):
"""docstring for DataProcessor"""
def __init__(self, args):
super(DataProcessor, self).__init__()
self.args = args
if args.dataset_name in ['ett']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_ett(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['Solar']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_Solar(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['etthourly']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_etthourly(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['aggtest']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_aggtest(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['electricity']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_electricity(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['foodinflation']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_foodinflation(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['foodinflationmonthly']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_foodinflationmonthly(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
if args.use_feats:
assert 'feats' in data_train[0].keys()
self.data_train = data_train
self.data_dev = data_dev
self.data_test = data_test
self.dev_tsid_map = dev_tsid_map
self.test_tsid_map = test_tsid_map
self.feats_info = feats_info
def get_processed_data(self, args):
lazy_dataset_train = TimeSeriesDataset(
self.data_train, args.N_input, args.N_output,
which_split='train',
norm_type=args.normalize,
feats_info=self.feats_info,
)
print('Number of chunks in train data:', len(lazy_dataset_train))
norm = lazy_dataset_train.input_norm
dev_norm, test_norm = norm, norm
feats_norms = lazy_dataset_train.feats_norms
#for i in range(len(self.data_dev)):
# dev_norm.append(norm[self.dev_tsid_map[i]])
#for i in range(len(self.data_test)):
# test_norm.append(norm[self.test_tsid_map[i]])
#dev_norm, test_norm = np.stack(dev_norm), np.stack(test_norm)
#import ipdb
#ipdb.set_trace()
lazy_dataset_dev = TimeSeriesDataset(
self.data_dev, args.N_input, args.N_output,
input_norm=dev_norm, which_split='dev',
#target_norm=Normalizer(self.data_dev, 'same'),
target_norm=dev_norm,
feats_info=self.feats_info,
tsid_map=self.dev_tsid_map,
feats_norms=feats_norms,
train_obj=lazy_dataset_train
)
print('Number of chunks in dev data:', len(lazy_dataset_dev))
lazy_dataset_test = TimeSeriesDataset(
self.data_test, args.N_input, args.N_output,
input_norm=test_norm, which_split='test',
#target_norm=test_norm,
target_norm=Normalizer(self.data_test, 'same'),
feats_info=self.feats_info,
tsid_map=self.test_tsid_map,
feats_norms=feats_norms,
train_obj=lazy_dataset_train
)
print('Number of chunks in test data:', len(lazy_dataset_test))
if len(lazy_dataset_train) >= args.batch_size:
batch_size = args.batch_size
else:
batch_size = args.batch_size
while len(lazy_dataset_train) // batch_size < 10:
batch_size = batch_size // 2
#import ipdb ; ipdb.set_trace()
if self.args.dataset_name in ['aggtest']:
train_shuffle = False
else:
train_shuffle = True
trainloader = DataLoader(
lazy_dataset_train, batch_size=batch_size, shuffle=True,
drop_last=False, num_workers=12, pin_memory=True,
#collate_fn=lazy_dataset_train.collate_fn
)
devloader = DataLoader(
lazy_dataset_dev, batch_size=batch_size, shuffle=False,
drop_last=False, num_workers=12, pin_memory=True,
#collate_fn=lazy_dataset_dev.collate_fn
)
testloader = DataLoader(
lazy_dataset_test, batch_size=batch_size, shuffle=False,
drop_last=False, num_workers=12, pin_memory=True,
#collate_fn=lazy_dataset_test.collate_fn
)
return {
'trainloader': trainloader,
'devloader': devloader,
'testloader': testloader,
'N_input': lazy_dataset_test.enc_len,
'N_output': lazy_dataset_test.dec_len,
'input_size': lazy_dataset_test.input_size,
'output_size': lazy_dataset_test.output_size,
'train_norm': norm,
'dev_norm': dev_norm,
'test_norm': test_norm,
'feats_info': self.feats_info,
'dev_tsid_map': lazy_dataset_dev.tsid_map,
'test_tsid_map': lazy_dataset_test.tsid_map
}