-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
228 lines (200 loc) · 9.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import numpy as np
import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau
from loss.dilate_loss import dilate_loss
from eval import eval_base_model
import time
from models.base_models import get_base_model
from utils import DataProcessor
import random
from torch.distributions.normal import Normal
def get_optimizer(args, lr, net):
optimizer = torch.optim.Adam(net.parameters(),lr=lr)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.95, patience=5, verbose=True)
return optimizer, scheduler
def train_model(
args, model_name, net, data_dict, saved_models_path, writer, verbose=1,
):
lr = args.learning_rate
epochs = args.epochs
trainloader = data_dict['trainloader']
devloader = data_dict['devloader']
testloader = data_dict['testloader']
norm = data_dict['dev_norm']
N_input = data_dict['N_input']
N_output = data_dict['N_output']
input_size = data_dict['input_size']
output_size = data_dict['output_size']
Lambda=1
optimizer, scheduler = get_optimizer(args, lr, net)
criterion = torch.nn.MSELoss()
cos_sim = torch.nn.CosineSimilarity(dim=2)
if (not args.ignore_ckpt) and os.path.isfile(saved_models_path):
print('Loading from saved model')
checkpoint = torch.load(saved_models_path, map_location=args.device)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
best_epoch = checkpoint['epoch']
best_metric = checkpoint['metric']
epochs = 0
else:
if args.ignore_ckpt:
print('Ignoring saved checkpoint')
else:
print('No saved model found')
best_epoch = -1
best_metric = np.inf
net.train()
if net.estimate_type in ['point']:
mse_loss = torch.nn.MSELoss()
curr_patience = args.patience
curr_step = 0
for curr_epoch in range(best_epoch+1, best_epoch+1+epochs):
epoch_loss, epoch_time = 0., 0.
for i, data in enumerate(trainloader, 0):
st = time.time()
inputs, target, feats_in, feats_tgt, _, _ = data
target = target.to(args.device)
batch_size, N_output = target.shape[0:2]
# forward + backward + optimize
teacher_forcing_ratio = args.teacher_forcing_ratio
#teacher_force = True if random.random() <= teacher_forcing_ratio else False
if model_name in [
'rnn-mse-ar', 'rnn-nll-ar', 'gpt-nll-ar', 'gpt-mse-ar'
]:
teacher_force = True
else:
teacher_force = False
out = net(
feats_in.to(args.device), inputs.to(args.device),
feats_tgt.to(args.device), target.to(args.device),
teacher_force=teacher_force
)
if net.is_signature:
if net.estimate_type in ['point']:
means, dec_state, sig_state = out
elif net.estimate_type in ['variance']:
means, stds, dec_state, sig_state = out
elif net.estimate_type in ['covariance']:
means, stds, vs, dec_state, sig_state = out
elif net.estimate_type in ['bivariate']:
means, stds, rho, dec_state, sig_state = out
else:
if net.estimate_type in ['point']:
means = out
elif net.estimate_type in ['variance']:
means, stds = out
elif net.estimate_type in ['covariance']:
means, stds, vs = out
elif net.estimate_type in ['bivariate']:
means, stds, rho = out
if net.estimate_type == 'covariance':
order = torch.randperm(target.shape[1])
means_shuffled = torch.cat(
torch.split(means[..., order, :], args.b, dim=1), dim=0
).squeeze(dim=-1)
stds_shuffled = torch.cat(
torch.split(stds[..., order, :], args.b, dim=1), dim=0
).squeeze(dim=-1)
vs_shuffled = torch.cat(
torch.split(vs[..., order, :], args.b, dim=1), dim=0
)
target_shuffled = torch.cat(
torch.split(target[..., order, :], args.b, dim=1), dim=0
).squeeze(dim=-1)
dist = torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal(
means_shuffled, vs_shuffled, stds_shuffled
)
loss = -torch.mean(dist.log_prob(target_shuffled))
#import ipdb ; ipdb.set_trace()
elif net.estimate_type == 'variance':
dist = torch.distributions.normal.Normal(means, stds)
loss = torch.mean(-dist.log_prob(target))
elif net.estimate_type in ['point']:
loss = mse_loss(target, means)
elif net.estimate_type in ['bivariate']:
means_avg = 0.5 * (means[..., :-1, :] + means[..., 1:, :])
var_a, var_b = stds[..., :-1, :]**2, stds[..., 1:, :]**2
var_avg = var_a/4. + var_b/4. + rho * var_a * var_b / 2.
stds_avg = var_avg**0.5
target_avg = 0.5 * (target[..., :-1, :] + target[..., 1:, :])
dist = torch.distributions.normal.Normal(means, stds)
dist_avg = torch.distributions.normal.Normal(means_avg, stds_avg)
loss = torch.mean(-dist.log_prob(target))
loss += torch.mean(-dist_avg.log_prob(target_avg))
#import ipdb ; ipdb.set_trace()
if net.is_signature:
sig_loss = torch.mean(1. - cos_sim(dec_state, sig_state))
loss += sig_loss
epoch_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
et = time.time()
epoch_time += (et-st)
print('Time required for batch ', i, ':', \
et-st, 'loss:', loss.item(), \
teacher_forcing_ratio, teacher_force, curr_patience)
#if i>=100:
# break
if (curr_step % args.print_every == 0):
(
_, _, pred_mu, pred_std,
metric_dilate, metric_mse, metric_dtw, metric_tdi,
metric_crps, metric_mae, metric_crps_part, metric_nll
)= eval_base_model(
args, model_name, net, devloader, norm, args.gamma, verbose=1
)
if net.estimate_type in ['point']:
metric = metric_mse
elif net.estimate_type in ['variance', 'covariance', 'bivariate']:
metric = metric_nll
#metric = metric_crps
if metric < best_metric:
curr_patience = args.patience
best_metric = metric
best_epoch = curr_epoch
state_dict = {
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': best_epoch,
'metric': best_metric,
}
torch.save(state_dict, saved_models_path)
print('Model saved at epoch', curr_epoch, 'step', curr_step)
else:
curr_patience -= 1
scheduler.step(metric)
# ...log the metrics
writer.add_scalar('dev_metrics/crps', metric_crps, curr_step)
writer.add_scalar('dev_metrics/mae', metric_mae, curr_step)
writer.add_scalar('dev_metrics/mse', metric_mse, curr_step)
writer.add_scalar('dev_metrics/nll', metric_nll, curr_step)
curr_step += 1 # Increment the step
if curr_patience == 0:
break
# ...log the epoch_loss
writer.add_scalar('training_time/epoch_time', epoch_time, curr_epoch)
if(verbose):
if (curr_step % args.print_every == 0):
print('curr_epoch ', curr_epoch, \
' epoch_loss ', epoch_loss, \
' loss shape ',loss_shape.item(), \
' loss temporal ',loss_temporal.item(), \
'learning_rate:', optimizer.param_groups[0]['lr'])
if curr_patience == 0:
break
print('Best model found at epoch', best_epoch)
#net.load_state_dict(torch.load(saved_models_path))
checkpoint = torch.load(saved_models_path, map_location=args.device)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
net.eval()
(
_, _, pred_mu, pred_std,
metric_dilate, metric_mse, metric_dtw, metric_tdi,
metric_crps, metric_mae, metric_crps_part, metric_nll
) = eval_base_model(
args, model_name, net, devloader, norm, args.gamma, verbose=1
)