-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathParallelCourses3.java
257 lines (229 loc) · 7.73 KB
/
ParallelCourses3.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*https://leetcode.com/problems/parallel-courses-iii/*/
/*TLE approach*/
class Solution {
boolean[] visited;
List<List<Integer>> components, graph;
int weight, maxWeight, componentsMax;
public int minimumTime(int n, int[][] relations, int[] time) {
components = new ArrayList<List<Integer>>();
graph = new ArrayList<List<Integer>>();
visited = new boolean[n];
int i, noc = 0;
maxWeight = componentsMax = Integer.MIN_VALUE;
//create a undirected graph for the given edges
for (i = 0; i < n; ++i)
graph.add(new ArrayList<Integer>());
for (int[] edge : relations)
{
graph.get(edge[0]-1).add(edge[1]-1);
graph.get(edge[1]-1).add(edge[0]-1);
}
//find out the connected components
for (i = 0; i < n; ++i)
{
if (!visited[i])
{
++noc;
visited[i] = true;
List<Integer> comp = new ArrayList<Integer>();
comp.add(i);
findComponents(i,comp);
components.add(comp);
}
}
//make the graph directed
for (int[] edge : relations)
graph.get(edge[1]-1).remove(new Integer(edge[0]-1));
//find the indegrees for each node
int[] indegrees = new int[n];
for (List<Integer> adjNodes : graph)
for (Integer node : adjNodes)
++indegrees[node];
visited = new boolean[n];
for (List<Integer> component : components) //for each component
{
maxWeight = Integer.MIN_VALUE; //redefine maxWeight
for (Integer node : component) //for each node in the component
{
if (indegrees[node] == 0) //if the indegree is 0
{
weight = 0;
visited[node] = true;
checkWeight(node,time); //find out the maximum weight required
}
}
if (maxWeight > componentsMax) //update the maximum over all components
componentsMax = maxWeight;
}
return componentsMax;
}
public void checkWeight(int src, int[] time)
{
weight += time[src]; //add weight
boolean isAvail = false;
List<Integer> adjNodes = graph.get(src);
for (Integer node : adjNodes) //for each adjacent node
{
if (!visited[node]) //if not visited
{
isAvail = true; //mark
visited[node] = true; //mark visited
checkWeight(node,time); //recursion
visited[node] = false; //backtrack
}
}
if (!isAvail) //if recursion was not called
{
if (weight > maxWeight) //update the maximum weight for this component
maxWeight = weight;
}
weight -= time[src]; //backtrack
}
public void findComponents(int src, List<Integer> comp)
{
List<Integer> adjNodes = graph.get(src);
for (int node : adjNodes)
{
if (!visited[node])
{
visited[node] = true;
comp.add(node);
findComponents(node,comp);
}
}
}
}
/*Small modification for DP*/
class Solution {
boolean[] visited;
List<List<Integer>> components, graph;
int weight, maxWeight, componentsMax;
int[] dp;
public int minimumTime(int n, int[][] relations, int[] time) {
components = new ArrayList<List<Integer>>();
graph = new ArrayList<List<Integer>>();
visited = new boolean[n];
dp = new int[n];
int i, noc = 0;
maxWeight = componentsMax = Integer.MIN_VALUE;
for (i = 0; i < n; ++i)
graph.add(new ArrayList<Integer>());
for (int[] edge : relations)
{
graph.get(edge[0]-1).add(edge[1]-1);
graph.get(edge[1]-1).add(edge[0]-1);
}
for (i = 0; i < n; ++i)
{
if (!visited[i])
{
++noc;
visited[i] = true;
List<Integer> comp = new ArrayList<Integer>();
comp.add(i);
findComponents(i,comp);
components.add(comp);
}
}
for (int[] edge : relations)
graph.get(edge[1]-1).remove(new Integer(edge[0]-1));
int[] indegrees = new int[n];
for (List<Integer> adjNodes : graph)
for (Integer node : adjNodes)
++indegrees[node];
visited = new boolean[n];
for (List<Integer> component : components)
{
maxWeight = Integer.MIN_VALUE;
for (Integer node : component)
{
if (indegrees[node] == 0)
{
weight = 0;
visited[node] = true;
checkWeight(node,time);
}
}
if (maxWeight > componentsMax)
componentsMax = maxWeight;
}
return componentsMax;
}
public void checkWeight(int src, int[] time)
{
weight += time[src];
dp[src] = weight;
boolean isAvail = false;
List<Integer> adjNodes = graph.get(src);
for (Integer node : adjNodes)
{
if (!visited[node])
{
isAvail = true;
visited[node] = true;
if (dp[node] < weight+time[node]) //recursion only if the current weight is larger than the previously stored weight
checkWeight(node,time);
visited[node] = false;
}
}
if (!isAvail)
{
if (weight > maxWeight)
maxWeight = weight;
}
weight -= time[src];
}
public void findComponents(int src, List<Integer> comp)
{
List<Integer> adjNodes = graph.get(src);
for (int node : adjNodes)
{
if (!visited[node])
{
visited[node] = true;
comp.add(node);
findComponents(node,comp);
}
}
}
}
/*Efficient Solution*/
class Solution
{
public int minimumTime(int n, int[][] relations, int[] time)
{
//create a graph and find out indegrees
List<Integer>[] graph = new List[n];
for(int i = 0; i < n; i++) graph[i] = new ArrayList<>();
int[] inDegrees = new int[n];
for(int[] a : relations)
{
graph[a[0]-1].add(a[1]-1);
++inDegrees[a[1]-1];
}
List<Integer> list = new ArrayList<>();
int[] dist = new int[n];
int maxValue = 0;
for(int i = 0; i < n; i++) //for each node
{
if(inDegrees[i] == 0) //if indegree is 0
{
list.add(i); //add to list
dist[i] = time[i]; //store distance
maxValue = Math.max(maxValue, dist[i]); //update the maximum value
}
}
for(int i = 0; i < list.size(); i++) //for each node with 0 indegree
{
int preReq = list.get(i);
for(int a : graph[preReq]) //for each adjacent node in graph
{
--inDegrees[a]; //reduce indegree
dist[a] = Math.max(dist[preReq]+time[a], dist[a]); //update the weight in the array
maxValue = Math.max(maxValue, dist[a]); //update the maximum value
if(inDegrees[a] == 0) list.add(a); //if indegrees is 0, add to list
}
}
return maxValue;
}
}