-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathConnectNetwork.java
113 lines (96 loc) · 3.24 KB
/
ConnectNetwork.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/*https://leetcode.com/problems/number-of-operations-to-make-network-connected/*/
//Depth First Traversal technique
class Solution {
boolean[] visited;
int visitCount = 0;
int n;
public int makeConnected(int n, int[][] connections) {
//if there are less than required wires, return -1
if (connections.length < n-1) return -1;
//build a graph from the given data
ArrayList<ArrayList<Integer>> graph = new ArrayList<ArrayList<Integer>>();
for (int i = 0; i < n; ++i)
graph.add(new ArrayList<Integer>());
for (int i = 0; i < connections.length; ++i)
{
graph.get(connections[i][0]).add(connections[i][1]);
graph.get(connections[i][1]).add(connections[i][0]);
}
//initialization
int connectedComponents = 0;
this.visited = new boolean[n];
this.n = n;
this.visitCount = 0;
//until all vertices are visited
while (visitCount != n)
{
//increase the number of connected components
++connectedComponents;
//get the next unvisited vertex
int unvisited = getUnvisitedVertex();
//mark it visited and increment the visit count
visited[unvisited] = true;
++visitCount;
//run DFS
runDFS(graph,unvisited);
}
//return
return connectedComponents-1;
}
//standard DFS method
public void runDFS(ArrayList<ArrayList<Integer>> graph, int currVertex)
{
ArrayList<Integer> adjacentVertices = graph.get(currVertex);
for (int adjacentVertex : adjacentVertices)
{
if (!visited[adjacentVertex])
{
visited[adjacentVertex] = true;
++visitCount;
runDFS(graph,adjacentVertex);
}
}
}
public int getUnvisitedVertex()
{
for (int i = 0; i < n; ++i)
if (!visited[i])
return i;
return -1;
}
}
//incomplete disjoint set technique
class Solution {
public int makeConnected(int n, int[][] connections) {
if (connections.length < n-1) return -1;
//store all the representatives
int[] rep = new int[n];
for (int i = 0; i < n; i++)
rep[i] = i;
//for each edge, call union
for (int[] connection : connections)
union(rep, connection[0], connection[1]);
//count all the representatives, which gives the number of connected components
int connectedComponents = 0;
for (int i = 0; i < n; i++) {
if (rep[i] == i) {
connectedComponents++;
}
}
return connectedComponents-1;
}
private void union(int[] rep, int x, int y) {
int repX = find(x, rep);
int repY = find(y, rep);
//if both the representatives are equal, return
if (repX == repY) {
return;
}
//otherwise update one of them
rep[repX] = repY;
}
private int find(int x, int[] rep) {
//if x is representative, return x, otherwise recur on the representative of x
return rep[x] == x ? x : (rep[x] = find(rep[x], rep));
}
}