-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTest-CNN-3 convlayer-CIFAR 10.py
223 lines (171 loc) · 8.54 KB
/
Test-CNN-3 convlayer-CIFAR 10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
import numpy as np
import pickle
import numpy.random as rng
import matplotlib.pyplot as plt
from scipy.signal import lfilter
def load_data(file_no):
path='/home/prashanth/cifar-10-batches-py/data_batch_'+str(file_no)
fo=open(path,'rb')
dict=pickle.load(fo,encoding='bytes')
X=dict[b'data']
Y=dict[b'labels']
fo.close
X=X.reshape((len(X),3,32,32)).transpose(0,2,3,1).astype("uint8")
Y=np.array(Y)
Y_hot=np.eye(no_of_classes)[Y]
return X,Y_hot
fo_tst=open('/home/prashanth/cifar-10-batches-py/test_batch','rb')
dict=pickle.load(fo_tst,encoding='bytes')
X_tst=dict[b'data']
Y_tst=dict[b'labels']
fo_tst.close
X_tst=X_tst.reshape((len(X_tst),3,32,32)).transpose(0,2,3,1).astype("uint8")
Y_tst=np.array(Y_tst)
def forward_conv(height,width,inshape,outshape,input):
weights=tf.Variable(rng.randn(height,width,inshape,outshape), dtype = tf.float32,name='conv_weights') #constant
return(tf.nn.conv2d(input,weights,strides=[1,1,1,1],padding="SAME"))
def forward_max_pooling_layer(inp,window_size):
return(tf.nn.max_pool(value=inp,ksize=[1,window_size,window_size,1],strides=[1,1,1,1],padding="SAME"))
def forward_avg_pooling_layer(inp,window_size):
return(tf.nn.avg_pool(value=inp,ksize=[1,window_size,window_size,1],strides=[1,1,1,1],padding="SAME"))
def flatten_forward(layer):
inp_list=layer.get_shape().as_list()
new_size = inp_list[-1] * inp_list[-2] * inp_list[-3]
return tf.reshape(layer,[-1,new_size]),new_size
def fc_forward(layer,new_size,no_of_classes):
weights=tf.Variable(rng.randn(new_size,no_of_classes),dtype=tf.float32,name='fc_forward_weights') #constant
return tf.matmul(layer,weights)
def fc_fc(rows,columns,layers):
weights=tf.Variable(rng.randn(rows,columns),dtype=tf.float32,name='fc_fc_weights')
return tf.matmul(layers,weights)
def activation(layer):
return tf.nn.relu(layer)
@tf.RegisterGradient("CustomConv")
def _conv2d(op,grad):
print("in override backprop")
input = op.inputs[0]
filter = op.inputs[1]
in_shape = tf.shape(input)
f_shape = tf.shape(filter)
g_input = tf.nn.conv2d_backprop_input(input_sizes = in_shape, filter = filter, out_backprop = grad, strides = [1,1,1,1], padding = "SAME")
g_filter = tf.nn.conv2d_backprop_filter(input, filter_sizes = f_shape, out_backprop = grad, strides = [1,1,1,1], padding = "SAME")
return g_input, g_filter
#PARAMETERS
num_epochs=3
batch=1000
iterations=1000
no_of_classes=10
Y_hot_tst=np.eye(no_of_classes)[Y_tst]
images=tf.placeholder(tf.float32,shape=(None,32,32,3),name='images')
true_labels=tf.placeholder(tf.float32,shape=(None,10),name='true_labels')
#LAYER1
filter_random1 = tf.Variable(rng.randn(5,5,3,32), dtype = tf.float32,name='random_filter1')
g=tf.get_default_graph()
with g.gradient_override_map({"Conv2D": "CustomConv"}):
net_conv=tf.nn.conv2d(images,filter_random1,strides=[1,1,1,1],padding="SAME")
net_pool= forward_max_pooling_layer(net_conv,3)
net_act=activation(net_pool)
#LAYER 2
filter_random2 = tf.Variable(rng.randn(5,5,32,64), dtype = tf.float32,name='random_filter2')
with g.gradient_override_map({"Conv2D":"CustomConv"}):
net_conv2=tf.nn.conv2d(net_act,filter_random2,strides=[1,1,1,1],padding="SAME")
net_pool2= forward_avg_pooling_layer(net_conv2,3)
net_act2=activation(net_pool2)
#LAYER 3
filter_random3=tf.Variable(rng.randn(5,5,64,64),dtype=tf.float32,name='random_filter3')
with g.gradient_override_map({"Conv2D":"CustomConv"}):
net_conv3=tf.nn.conv2d(net_act2,filter_random3,strides=[1,1,1,1],padding="SAME")
net_pool3=forward_avg_pooling_layer(net_conv3,3)
net_act3=activation(net_pool3)
net_flatten,new_size=flatten_forward(net_act3)
net_fc=fc_forward(net_flatten,new_size,128)
net_act4=activation(net_fc)
output=fc_fc(128,no_of_classes,net_act4)
#compute loss
cross_entropy=tf.nn.softmax_cross_entropy_with_logits(logits=
output,labels=true_labels)
cost = tf.reduce_mean(cross_entropy)
# filter_conv_bp=tf.Variable(rng.randn(5,5,3,16), dtype = tf.float32)
#LAYER 1
net_conv_bp= forward_conv(5,5,3,32,images) # height,width,inshape,outshape
net_pool_bp = forward_max_pooling_layer(net_conv_bp,3) #output,windowsize
net_act_bp=activation(net_pool_bp)
#LAYER 2
net_conv_bp2 = forward_conv(5,5,32,64,net_act_bp) # height,width,inshape,outshape
net_pool_bp2 = forward_avg_pooling_layer(net_conv_bp2,3) #output,windowsize
net_act_bp2=activation(net_pool_bp2)
#LAYER 3
net_conv_bp3=forward_conv(5,5,64,64,net_act_bp2)
net_pool_bp3=forward_avg_pooling_layer(net_conv_bp3,3)
net_act_bp3=activation(net_pool_bp3)
net_flatten_bp,new_size_bp=flatten_forward(net_act_bp3)
net_fc_bp1=fc_forward(net_flatten_bp,new_size_bp,128)
net_act_bp4=activation(net_fc_bp1)
output_bp=fc_fc(128,no_of_classes,net_act_bp4)
#cross_entropy_bp=tf.nn.softmax_cross_entropy_with_logits_v2(logits=
# output_bp,labels=true_labels)
cross_entropy_bp=tf.nn.softmax_cross_entropy_with_logits(logits=
output_bp,labels=true_labels)
cost_bp=tf.reduce_mean(cross_entropy_bp)
accuracy_fa=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(output,1),tf.argmax(true_labels,1)),tf.float32))
accuracy_bp=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(output_bp,1),tf.argmax(true_labels,1)),tf.float32))
#BP gradients
bp_grad = tf.gradients(cross_entropy_bp, images)
override_grad = tf.gradients(cross_entropy, images)
train_op_bp = tf.train.AdamOptimizer(learning_rate=0.0000001).minimize(cost_bp)
train_op_fa=tf.train.AdamOptimizer(learning_rate=0.0000001).minimize(cost)
store_err_bp=[]
store_err_fa=[]
acc_fa=[]
acc_bp=[]
testing_fa=[]
testing_bp=[]
print("PARAMETERS:")
print("\nNo of epochs=",num_epochs)
print("\nBatch size=",batch)
print("\nIterations per epoch=",iterations)
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
print("\n\t\t\tEPOCH NO:",epoch+1)
no=np.random.randint(1,5)
X,Y_hot=load_data(no)
print("Picking from data batch:",no)
batch_no=np.random.randint(0,X.shape[0],size=batch)
for count in range(iterations):
inp_features=X[batch_no,:,:,:]
inp_features=inp_features.astype(np.float32)
inp_labels=Y_hot[batch_no,:]
inp_labels=inp_labels.astype(np.float32)
# autobp_input=sess.run(bp_grad,feed_dict={images:inp_features,true_labels:inp_labels})
# override_input=sess.run(override_grad,feed_dict={images:inp_features,true_labels:inp_labels})
sess.run(train_op_bp,feed_dict={images:inp_features,true_labels:inp_labels})
sess.run(train_op_fa,feed_dict={images:inp_features,true_labels:inp_labels})
entropy_bp=sess.run(cross_entropy_bp,feed_dict={images:inp_features,true_labels:inp_labels})
store_err_bp.append(np.mean(entropy_bp))
entropy_fa=sess.run(cross_entropy,feed_dict={images:inp_features,true_labels:inp_labels})
store_err_fa.append(np.mean(entropy_fa))
acc_fa.append(sess.run(accuracy_fa,feed_dict={images:inp_features,true_labels:inp_labels}))
acc_bp.append(sess.run(accuracy_bp,feed_dict={images:inp_features,true_labels:inp_labels}))
if (count+1)%200==0:
print("Iteration:",count+1)
print("BackPropagation:",sess.run(cost_bp,feed_dict={images:inp_features,true_labels:inp_labels}),
"\t Feedback:",sess.run(cost,feed_dict={images:inp_features,true_labels:inp_labels}))
#Resource Exhausted with loading the entire testing data which has 10000 images.
#Instead testing on 1000 random images selected from the testing data. results may not be as consistent
pick_rnd=np.random.randint(0,X_tst.shape[0],1000)
tst_fa=sess.run(accuracy_fa,feed_dict={images:X_tst[pick_rnd,:,:,:].astype(np.float32),
true_labels:Y_hot_tst[pick_rnd,:]})
tst_bp=sess.run(accuracy_bp,feed_dict={images:X_tst[pick_rnd,:,:,:].astype(np.float32),
true_labels:Y_hot_tst[pick_rnd,:]})
testing_fa.append(tst_fa)
testing_bp.append(tst_bp)
print("\nAt the end of EPOCH:",epoch+1)
print("Testing Accuracy:\nBack Propagation",tst_bp,"\tRandom Feedback:",tst_fa)
with open('Analysis-CIFAR10.pkl','wb') as f:
pickle.dump([store_err_bp,store_err_fa,acc_fa,acc_bp,testing_fa,testing_bp],f,protocol=2)