Skip to content

Real-Time 3D Semantic Reconstruction using Kimera Sematics and Image Segmentation in Pytorch

License

Notifications You must be signed in to change notification settings

pranay731/Kimera-Semantics-with-Segmentation

Repository files navigation

Kimera-Semantics with Segmentation over ADE20K classes in PyTorch

Real-Time 3D Semantic Reconstruction using Kimera Sematics and Semantic Segmentation in Pytorch with 150 classes.

Implemented on Kimera-Semantics by MIT SPARK Lab and semantic-segmentation-pytorch by MIT CSAIL Computer Vision Lab

Environment

The code is tested under the following configuration.

  • Ubuntu 18.04 LTS
  • CUDA=10.2
  • PyTorch>=1.5.1
  • ROS Melodic

1. Installation

A. Prerequisities

  • Install ROS by following the official ROS website.

  • Install dependencies:

sudo apt-get install python-catkin-tools
sudo apt-get install python-wstool python-catkin-tools  protobuf-compiler autoconf
sudo apt-get install ros-melodic-cmake-modules

# install Python3 dependencies
pip3 install rospkg
pip3 install numpy scipy
pip3 install pytorch>=0.4.1 torchvision
pip3 install yacs tqdm

B. Setup

Using catkin:

# Setup catkin workspace
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/
catkin init
catkin config --extend /opt/ros/melodic
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
catkin config --merge-devel

# Add workspace to bashrc.
echo 'source ~/catkin_ws/devel/setup.bash' >> ~/.bashrc

# Clone repo
cd ~/catkin_ws/src
git clone https://github.com/pranay731/Kimera-Semantics-with-Segmentation.git

# Install dependencies from rosinstall file using wstool
wstool init # Use unless wstool is already initialized

# For https:
wstool merge Kimera-Semantics/kimera/install/kimera_semantics_https.rosinstall
# For ssh:
#wstool merge Kimera-Semantics/kimera/install/kimera_semantics_ssh.rosinstall

# Download and update all dependencies
wstool update

# Make executable:
cd ..
sudo chmod +x src/ros-semantic-segmentation-pytorch/scripts/run_semantic_segmentation

# Build 
catkin build

# Refresh workspace
source ~/catkin_ws/devel/setup.bash

A number of models are available. Default is resnet50dilated for encoder and ppm_deepsup for decoder. Download pretrained checkpoints for models from CSAIL Website and copy them to src/ros-semantic-segmentation-pytorch/ckpt/{modelname}/

Else Download ckpt for default model from ckpt link and extract and copy it in ckpt directory.

mkdir -p ./src/ros-semantic-segmentation-pytorch/ckpt
unzip 'path/to/downloaded/zip/file' -d ./src/ros-semantic-segmentation-pytorch/ckpt

2. Usage

It expects that camera with color and depth as well as odom and tf are being published by the robot.

Launch file :

  • color_topic -> raw image rgb topic.
  • depth_topic -> raw image depth topic.
  • segmentation_topic -> raw image segmentation output.
  • camera_info_topic -> camera color info topic.

Other Configurations can be tweaked from there respective package launch files.

roslaunch semantic_segmentation_ros semantic_segmentation.launch

About

Real-Time 3D Semantic Reconstruction using Kimera Sematics and Image Segmentation in Pytorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages