Skip to content

Commit

Permalink
initial local uploads
Browse files Browse the repository at this point in the history
  • Loading branch information
pranavkr29 committed Jun 5, 2024
1 parent a88a2de commit 39e29a2
Show file tree
Hide file tree
Showing 10 changed files with 3,146 additions and 2 deletions.
27 changes: 25 additions & 2 deletions README.md
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,2 +1,25 @@
# brane-sgd
TF and Pytorch Code to find the minima in string brane configurations using SGD
# String Theory and Machine Learning Loss Landscape
## TF and Pytorch Code to find the minima in string brane configurations using SGD

### How to find all the minima of the landscapes predicted by different brane configuration, using ML optimization methods

A code repository for papers listed below

https://link.springer.com/article/10.1007/JHEP10(2023)107

https://arxiv.org/abs/2312.04643

## Workflow

All the codefiles in this repository are some permutation of an algorithm where the potential function created using physical principles is cast as a landscape, whereupon we start from a randomly chosen point, and use SGD(or any of the other Keras optmizer) to find a minima, using the value of the loss function as a threshold to stop the run. Because the number of minima changes with a Hyperparameter of the cost function (N or N4 in the codes), the code needs to run many many times, sometimes as many as 1000 times, hence the code is paralellized and we have used @tf.function to speed it up.

## Structure

All the .py files are self contained files. There is no directory structure as we were running them on colab or Kaggle often, and keeping track of all the changes over a directory was cumbersone, so we stuck one script which needed to be edited to change the code.


## Getting started

To get started, first install the required libraries inside a virtual environment:

`pip install -r requirements.txt`
303 changes: 303 additions & 0 deletions SGD_brane_old_tf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,303 @@
#!/usr/bin/python3

import time
import pickle
import tensorflow as tf
from numpy import zeros
from multiprocessing import Pool
num_stacks = 4
real_dtype = tf.float64
complex_dtype = tf.complex128
mean = 0.0
minval = 0.0
maxval = 2.0
search_range = int(abs(mean) + abs(maxval))


def Z(i, j, N4):
N = [1, 1, 1, N4]
shape = (N[i - 1], N[j - 1])
"""
Initialize real matrices randomly, and combine to make them complex
"""
rand_real = tf.random.uniform(
shape, minval, maxval, dtype=real_dtype)
rand_imag = tf.random.uniform(
shape, minval, maxval, dtype=real_dtype)
return tf.Variable(tf.complex(rand_real, rand_imag))


def phi(N4):
shape = (N4, N4)
"""
Initialize real matrices randomly, and combine to make them complex
"""
rand_real = tf.random.uniform(
shape, minval, maxval, dtype=real_dtype)
rand_imag = tf.random.uniform(
shape, minval, maxval, dtype=real_dtype)
return tf.Variable(tf.complex(rand_real, rand_imag))


def phi_gauged(N4):
shape = [N4]
"""
Initialize real matrices randomly, and combine to make them complex
"""
rand_real = tf.random.uniform(
shape, minval, maxval, dtype=real_dtype)
rand_imag = tf.random.uniform(
shape, minval, maxval, dtype=real_dtype)
return tf.Variable(tf.complex(rand_real, rand_imag))


def Z_gauged(i, j, N4):
N = [1, 1, 1, N4]
shape = (N[i - 1], N[j - 1])
"""
Initialize a zeros matrix, and replace the last element with 1
"""
rand_real = tf.Variable(tf.zeros(shape, dtype=real_dtype))
rand_real[-1, -1].assign(1)

return tf.constant(tf.cast(rand_real, complex_dtype))


def C(i, j):
if (i, j) == (1, 2):
return tf.cast(0.696667, dtype=complex_dtype)
elif (i, j) == (1, 3):
return tf.cast(0.178734, dtype=complex_dtype)
elif (i, j) == (1, 4):
return tf.cast(0.292304, dtype=complex_dtype)
elif (i, j) == (2, 3):
return tf.cast(-0.54981, dtype=complex_dtype)
elif (i, j) == (2, 4):
return tf.cast(0.962468, dtype=complex_dtype)
elif (i, j) == (3, 4):
return tf.cast(-0.506718, dtype=complex_dtype)


def complex_id(N4):
return tf.cast(tf.eye(N4, N4), complex_dtype)


def commutator(a, b):
return tf.matmul(a, b) - tf.matmul(b, a)


def triple_mul(a, b, c):
return tf.matmul(a, tf.matmul(b, c))


@tf.function
def make_mat(input):
N4 = input.shape[0]
shape = (N4 - 1, N4)
arr = zeros(shape)
for i in range(N4 - 1):
for j in range(N4):
if i + j >= N4 - 1:
arr[i, j] = 1
arr = tf.convert_to_tensor(arr, dtype=complex_dtype)
return tf.concat([arr, tf.reshape(input, [1, input.shape[0]])], 0)


def full_vars(arg_list, index):
arg_list[index] = make_mat(arg_list[index])
return arg_list


def E12(Z12, Z13, Z14, Z21, Z23, Z24, Z31, Z32, Z41, Z42):
return triple_mul(Z12, Z23, Z31) + triple_mul(Z12, Z24, Z41) - triple_mul(Z21, Z13, Z32) - triple_mul(Z21, Z14, Z42)


def E13(Z12, Z13, Z14, Z21, Z23, Z31, Z32, Z34, Z41, Z43):
return triple_mul(Z13, Z32, Z21) - triple_mul(Z13, Z34, Z41) - triple_mul(Z31, Z12, Z23) - triple_mul(Z31, Z14, Z43)


def E23(Z12, Z13, Z21, Z23, Z24, Z31, Z32, Z34, Z42, Z43):
return triple_mul(Z23, Z31, Z12) + triple_mul(Z23, Z34, Z42) - triple_mul(Z32, Z21, Z13) - triple_mul(Z32, Z24, Z43)


def F12(Z12, Z21):
return tf.matmul(Z12, Z21) + C(1, 2)


def F23(Z23, Z32):
return tf.matmul(Z23, Z32) + C(2, 3)


def F31(Z13, Z31):
return tf.matmul(Z31, Z13) + C(1, 3)


def F41(Z14, Z41, phi2, phi3):
N4 = Z41.shape[0]
return tf.matmul(Z41, Z14) + C(1, 4) * complex_id(N4) + commutator(phi2, phi3)


def F42(Z24, Z42, phi1, phi3):
N4 = Z42.shape[0]
return tf.matmul(Z42, Z24) + C(2, 4) * complex_id(N4) + commutator(phi3, phi1)


def F43(Z34, Z43, phi1, phi2):
N4 = Z43.shape[0]
return tf.matmul(Z43, Z34) + C(3, 4) * complex_id(N4) + commutator(phi1, phi2)


def G14(Z12, Z13, Z14, Z24, Z34, phi1):
return -tf.matmul(Z14, phi1) + tf.matmul(Z12, Z24) - tf.matmul(Z13, Z34)


def G24(Z14, Z21, Z23, Z24, Z34, phi2):
return -tf.matmul(Z24, phi2) + tf.matmul(Z21, Z14) + tf.matmul(Z23, Z34)


def G34(Z14, Z24, Z31, Z32, Z34, phi3):
return -tf.matmul(Z34, phi3) + tf.matmul(Z31, Z14) + tf.matmul(Z32, Z24)


def G41(Z21, Z31, Z41, Z42, Z43, phi1):
return -tf.matmul(phi1, Z41) + tf.matmul(Z42, Z21) + tf.matmul(Z43, Z31)


def G42(Z12, Z32, Z41, Z42, Z43, phi2):
return -tf.matmul(phi2, Z42) + tf.matmul(Z43, Z32) + tf.matmul(Z41, Z12)


def G43(Z13, Z23, Z41, Z42, Z43, phi3):
return -tf.matmul(phi3, Z43) - tf.matmul(Z41, Z13) + tf.matmul(Z42, Z23)


def init_vars(N4):
Z12 = Z_gauged(1, 2, N4)
Z23 = Z_gauged(2, 3, N4)
Z41 = Z_gauged(4, 1, N4)

Z13 = Z(1, 3, N4)
Z14 = Z(1, 4, N4)
Z21 = Z(2, 1, N4)
Z24 = Z(2, 4, N4)
Z31 = Z(3, 1, N4)
Z32 = Z(3, 2, N4)
Z34 = Z(3, 4, N4)
Z42 = Z(4, 2, N4)
Z43 = Z(4, 3, N4)
phi1 = phi(N4)
phi2 = phi_gauged(N4)
phi3 = phi(N4)

arg_list = [Z12, Z13, Z14, Z21, Z23, Z24, Z31,
Z32, Z34, Z41, Z42, Z43, phi1, phi2, phi3]
var_list = [Z13, Z14, Z21, Z24, Z31, Z32, Z34, Z42, Z43, phi1, phi2, phi3]

return arg_list, var_list


gauge_index = 13


@tf.function
def brane_potential(Z12, Z13, Z14, Z21, Z23, Z24, Z31, Z32, Z34, Z41, Z42, Z43, phi1, phi2, phi3):
E12_sqnorm = tf.norm(
E12(Z12, Z13, Z14, Z21, Z23, Z24, Z31, Z32, Z41, Z42)) ** 2
E13_sqnorm = tf.norm(
E13(Z12, Z13, Z14, Z21, Z23, Z31, Z32, Z34, Z41, Z43)) ** 2
E23_sqnorm = tf.norm(
E23(Z12, Z13, Z21, Z23, Z24, Z31, Z32, Z34, Z42, Z43)) ** 2

phi2 = make_mat(phi2)

F12_sqnorm = tf.norm(F12(Z12, Z21)) ** 2
F23_sqnorm = tf.norm(F23(Z23, Z32)) ** 2
F31_sqnorm = tf.norm(F31(Z13, Z31)) ** 2
F41_sqnorm = tf.norm(F41(Z14, Z41, phi2, phi3)) ** 2
F42_sqnorm = tf.norm(F42(Z24, Z42, phi1, phi3)) ** 2
F43_sqnorm = tf.norm(F43(Z34, Z43, phi1, phi2)) ** 2

G14_sqnorm = tf.norm(G14(Z12, Z13, Z14, Z24, Z34, phi1)) ** 2
G24_sqnorm = tf.norm(G24(Z14, Z21, Z23, Z24, Z34, phi2)) ** 2
G34_sqnorm = tf.norm(G34(Z14, Z24, Z31, Z32, Z34, phi3)) ** 2
G41_sqnorm = tf.norm(G41(Z21, Z31, Z41, Z42, Z43, phi1)) ** 2
G42_sqnorm = tf.norm(G42(Z12, Z32, Z41, Z42, Z43, phi2)) ** 2
G43_sqnorm = tf.norm(G43(Z13, Z23, Z41, Z42, Z43, phi3)) ** 2

return tf.math.real(E12_sqnorm + E13_sqnorm + E23_sqnorm + F12_sqnorm + F23_sqnorm + F31_sqnorm + F41_sqnorm + F42_sqnorm + F43_sqnorm + G14_sqnorm + G24_sqnorm + G34_sqnorm + G41_sqnorm + G42_sqnorm + G43_sqnorm)


def optimize_2loops(N4):
arg_list, var_list = init_vars(N4)

def loss():
return brane_potential(*arg_list)

num_cycles = 500 + search_range * 250
num_epochs = 100
learning_rate = 1e-4 / search_range
momentum = 0.99

loss_vals = [loss()]

print('beginning_loss:', loss_vals[-1].numpy(), 'Z12:', arg_list[0].numpy(),
'Z13:', arg_list[1].numpy(), 'Z14:', arg_list[2].numpy(), 'phi_gauge:', arg_list[gauge_index].numpy())

for cycle in range(num_cycles):

# print('cycle:', cycle, "V:", loss_vals[-1])
# print('learning rate:', learning_rate)

opt = tf.keras.optimizers.SGD(
learning_rate=learning_rate, momentum=momentum)

for _ in range(num_epochs):
opt.minimize(loss, var_list=var_list)

loss_vals.append(loss())

if loss_vals[-1] < 1e-12 or loss_vals[-1] > 1e+8 or tf.math.is_nan(loss_vals[-1]):
break
elif loss_vals[-1] > loss_vals[-2]:
learning_rate /= 1.1
else:
learning_rate = min(learning_rate * 1.1, 1e-2)

print('end_loss:', loss_vals[-1].numpy(), 'Z12:', arg_list[0].numpy(),
'Z13:', arg_list[1].numpy(), 'Z14:', arg_list[2].numpy(), 'phi_gauge:', arg_list[gauge_index].numpy())

return loss_vals[-1], arg_list


def main(N4):

start_time = time.time() # at the beginning of the program

variable_list = []
N4_list = [N4 for _ in range(num_runs[N4])]
print("N4:", N4, "number of runs:", len(N4_list))

threshold = 1e-6
with Pool() as pool:
for loss, arg_list in pool.map(optimize_2loops, N4_list):
if loss < threshold:
variable_list.append(full_vars(arg_list, gauge_index))

print("N4:", N4, "number of runs:", len(N4_list),
'results_length:', len(variable_list))
with open('variables_N4={}_{}.data'.format(N4, gauge_index - 11), 'wb') as filehandle:
pickle.dump(variable_list, filehandle)

end_time = time.time() # at the beginning of the program
print('for N4 = {}..... time taken = {} seconds'.format(
N4, round(end_time - start_time, 2)))


num_runs = {1: 25, 2: 4, 3: 4}
N4 = 3


if __name__ == "__main__":
main(N4)

exit()
Loading

0 comments on commit 39e29a2

Please sign in to comment.