-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathv4_tiny.py
76 lines (63 loc) · 2.57 KB
/
v4_tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import cv2
import numpy as np
model = 'model/yolov4-tiny.weights'
config = r'data/yolov4-tiny.cfg'
labelsPath = r"data/coco.names"
v4tiny_Net = cv2.dnn.readNetFromDarknet(config, model)
ln = v4tiny_Net.getLayerNames()
ln = [ln[i[0] - 1] for i in v4tiny_Net.getUnconnectedOutLayers()]
LABELS = open(labelsPath).read().strip().split("\n")
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
def postprocess(frame, networkOutput, conf, threshold):
(H, W) = frame.shape[:2]
boxes = []
confidences = []
classIDs = []
for output in networkOutput:
for detection in output:
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
if confidence > conf:
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
idxs = cv2.dnn.NMSBoxes(boxes, confidences, conf, threshold)
if len(idxs) > 0:
for i in idxs.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
# end = time.time()
# seconds = end - begin
cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
0.5, color, 1)
def v4_inference(frame):
conf, threshold = 0.4, 0.4
v4tiny_Net.setInput(cv2.dnn.blobFromImage(frame, 1 / 255.0, (320, 320), swapRB=True, crop=False))
networkOutput = v4tiny_Net.forward(ln)
postprocess(frame, networkOutput, conf, threshold)
# localtime = time.asctime(time.localtime(time.time()))
t, _ = v4tiny_Net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
print(label)
# draw_time(frame, t)
if __name__ == '__main__':
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
cap.set(3, 960) # set video width
cap.set(4, 720) # set video height
while True:
# begin = time.time()
ret, frame = cap.read()
v4_inference(frame)
cv2.imshow('capture', frame)
if cv2.waitKey(1) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()