-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMicroAggregation.cpp
855 lines (730 loc) · 23.5 KB
/
MicroAggregation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/*
* Argus Open Source
* Software to apply Statistical Disclosure Control techniques
*
* Copyright 2014 Statistics Netherlands
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the European Union Public Licence
* (EUPL) version 1.1, as published by the European Commission.
*
* You can find the text of the EUPL v1.1 on
* https://joinup.ec.europa.eu/software/page/eupl/licence-eupl
*
* This software is distributed on an "AS IS" basis without
* warranties or conditions of any kind, either express or implied.
*/
#include "MicroAggregation.h"
#include <fstream>
#include <math.h>
#include <float.h>
//long Do_Opt_Mic ( long n_el, long n_var, long k, double **out_data, long *prog);
/*long Microaggregation(long n_var, long n_elements,
long elms_p_group, long group_var, long *how_many,
long *var, double **out_data, long optim,
long *prog)
*/
long CMicroAggregation::Microaggregation(long n_var, long n_elements,
long elms_p_group, long group_var, long *how_many,
long *var, double **out_data, long optim)
{
long max_group, utemp;
long *beg_order=NULL, i=0, ii, j, k, h, r=0, s=0, first, remain, loop;
double max_dist, distance, min_dist, dtemp, data_add, sqr_add;
double *mean_var=NULL, **mean=NULL, *all_mean=NULL, *all_stdev=NULL;
long *partition=NULL, beg_var, end_var;
long *var_order=NULL, *used_vars;
long res;
// =========================================================================
// Parameter control
// =========================================================================
if (n_elements<3)
{
return MIC_ERR_NEL;
}
if (n_var<1)
{
return MIC_ERR_NVAR;
}
if (elms_p_group<2)
{
return MIC_ERR_MEG;
}
if (group_var<1)
{
return MIC_ERR_GOV;
}
var_order = new long [n_var];
if (!var_order)
{
return MIC_OUT_MEM;
}
// Read how many elements are in each group of variables
if (group_var == 1) {
how_many[0] = n_var;
var[0] = var_order[0] = 1;
}
if (group_var > 1) {
long add_hm = 0;
for (i=0 ; i<group_var ; i++)
{
if (how_many[i]<1)
{
return MIC_ERR_VPG;
}
add_hm+= how_many[i];
}
if (add_hm!=n_var)
{
return MIC_ERR_VPG;
}
used_vars = new long[n_var];
for (i=0 ; i<n_var ; i++)
{
used_vars[i] = var[i];
for (j=0; j<i; j++)
if (used_vars[j] == var[i])
{
return MIC_ERR_COL;
}
if (var[i]> n_var)
{
return MIC_ERR_COL;
}
}
for (i=0 ; i<n_var ; i++)
var[i] = var[i]-1;
for (i=0 ; i<n_var ; i++)
var_order[var[i]] = i;
}
// =========================================================================
// If different groups are defined data must be sorted in order to form
// the groups
// =========================================================================
if (group_var>1) {
for (j=0; j<n_var; j++)
for (k=j+1; k<n_var; k++)
if (var_order[j] > var_order[k])
{
for (i=0 ; i<n_elements ; i++)
{
dtemp = out_data[i][j];
out_data[i][j] = out_data[i][k];
out_data[i][k] = dtemp;
}
utemp = var_order[j];
var_order[j] = var_order[k];
var_order[k] = utemp;
}
}
// =========================================================================
// If only a variable is defined, the optimal microaggregation is performed
// using the Hansen-Mukherjee polynomial exact method
// =========================================================================
if ((n_var==group_var)&&(optim))
{
//res = Do_Opt_Mic ( n_elements, n_var, elms_p_group, out_data,prog);
res = Do_Opt_Mic ( n_elements, n_var, elms_p_group, out_data);
if (!res) // An error has ocurred
return res;
}
else /* Mateo-Domingo method */
{
// =========================================================================
// Mean and standard deviation are calculated in order to standardize the
// the data, so distance calculation between elements will be more accurate.
// =========================================================================
all_mean = new double [n_var];
if (!all_mean)
{
return MIC_OUT_MEM;
}
all_stdev = new double [n_var];
if (!all_stdev)
{
return MIC_OUT_MEM;
}
for (j=0; j<n_var; j++)
{
for (i=0, data_add=0.0, sqr_add=0.0; i<n_elements; i++)
{
data_add += out_data[i][j];
sqr_add += out_data[i][j]*out_data[i][j];
}
all_mean[j] = data_add/(double)n_elements;
all_stdev[j] = (sqr_add-n_elements*all_mean[j]*all_mean[j])/((double)n_elements-1);
all_stdev[j] = sqrt(all_stdev[j]);
if (all_stdev[j]==0.0)
{
return MIC_ERR_STD;
}
}
// =========================================================================
// Standardized data are calculated and kept.
// =========================================================================
for (j=0; j<n_var; j++)
for (i=0; i<n_elements; i++)
out_data[i][j] = (out_data[i][j]-all_mean[j])/all_stdev[j];
// =========================================================================
// The initial sorting of the data is kept.
// =========================================================================
beg_order = new long [n_elements];
if (!beg_order)
{
return MIC_OUT_MEM;
}
for (i=0 ; i<n_elements ; i++)
beg_order[i] = i;
// =====================================================================
// Fixed size multivariate microaggregation is performed (data projection
// according to distance between elements)
// =====================================================================
// The number of groups of a k-partition with k = elms_p_group
max_group = n_elements/elms_p_group;
partition = new long [max_group];
if (!partition)
{
return MIC_OUT_MEM;
}
// Initial partition is performed in a trivial way
for (i=0 ; i<max_group-1 ; i++)
partition[i] = elms_p_group;
partition[max_group-1] = n_elements-i*elms_p_group;
// ===================================================================
// The two most outstanding polongs are computed in the following way:
// the 1st polong, so-called 'r', is determined as the one farthest
// from the average of the data set polongs and the 2nd polong, 's', is
// determined as the one farthest from the first polong.
// ====================================================================
// *prog = 0; prlongf ("\n");
for (ii=0, beg_var=0, end_var=0; ii<group_var; ii++)
{
end_var += how_many[ii];
remain = n_elements;
loop = 0;
mean_var = new double[end_var-beg_var];
while (remain >= 3*elms_p_group)
{
// *prog = (n_elements - remain)+ii*n_elements;
// prlongf ("\rProgress: \t%.2f percent",((double)(*prog)*100.0)/(group_var*n_elements));
first = loop*elms_p_group;
for(k=beg_var; k<end_var; k++)
mean_var[k-beg_var]=0.0;
// The mean for each variable is calculated, using the
// elements not yet used
for(k=beg_var; k<end_var; k++)
{
for (j=first; j<n_elements; j++ )
mean_var[k-beg_var]+=out_data[j][k];
mean_var[k-beg_var]=mean_var[k-beg_var]/(n_elements-first);
}
// 'r' is calculated
for (j=first, max_dist=0.0; j<n_elements; j++)
{
for (k=beg_var, distance=0.0; k<end_var; k++)
distance += (out_data[j][k]-mean_var[k-beg_var])*(out_data[j][k]-mean_var[k-beg_var]);
if (distance > max_dist)
{
max_dist = distance;
r = j;
}
}
// 's' is calculated
for (j=first, max_dist=0.0; j<n_elements; j++)
{
for (k=beg_var, distance=0.0; k<end_var; k++)
distance += (out_data[j][k]-out_data[r][k])*(out_data[j][k]-out_data[r][k]);
if (distance > max_dist)
{
max_dist = distance;
s = j;
}
}
// ============================================================
// 'r' will be always less than 's'
// ============================================================
if (s < r)
{
utemp = r;
r = s;
s = utemp;
}
// ============================================================
// The element 'r' is the first element and it is placed
// in the first free position of the microaggregation array.
// ============================================================
if (r > first)
{
for (j=beg_var; j<end_var; j++)
{
dtemp = out_data[r][j];
out_data[r][j] = out_data[first][j];
out_data[first][j] = dtemp;
}
utemp = beg_order[r];
beg_order[r] = beg_order[first];
beg_order[first] = utemp;
}
// ========================================================
// Element 's' is placed in the first free position
// that will appear when 'r' group is completed.
// ========================================================
if (s != first+elms_p_group)
{
for (j=beg_var; j<end_var; j++)
{
dtemp = out_data[s][j];
out_data[s][j] = out_data[first+elms_p_group][j];
out_data[first+elms_p_group][j] = dtemp;
}
utemp = beg_order[s];
beg_order[s] = beg_order[first+elms_p_group];
beg_order[first+elms_p_group] = utemp;
}
// ===========================================================
// Look for the other elms_p_group-1 elements closer to
// element 'r' in order to form a group. Elements are sorted
// so they are stored together.
// ===========================================================
for (i=1; i<elms_p_group; i++)
{
for (j=first+i, min_dist=max_dist; j<n_elements; j++)
{
for (k=beg_var, distance=0.0; k<end_var; k++)
distance += (out_data[j][k]-out_data[first][k])*(out_data[j][k]-out_data[first][k]);
if (distance < min_dist)
{
min_dist = distance;
r = j;
}
}
if (r > first+i)
{
for (k=beg_var; k<end_var; k++)
{
dtemp = out_data[r][k];
out_data[r][k] = out_data[first+i][k];
out_data[first+i][k] = dtemp;
}
utemp = beg_order[r];
beg_order[r] = beg_order[first+i];
beg_order[first+i] = utemp;
}
}
first += elms_p_group;
// ===========================================================
// Look for the other elms_p_group-1 elements which are closer to
// element 'r' in order to form a group. Elements are sorted
// so they are stored together.
// ===========================================================
for (i=1 ; i<elms_p_group ; i++)
{
for (j=first+i, min_dist=max_dist; j<n_elements; j++)
{
for (k=beg_var, distance=0.0; k<end_var; k++)
distance += (out_data[j][k]-out_data[first][k])*(out_data[j][k]-out_data[first][k]);
if (distance < min_dist)
{
min_dist = distance;
r = j;
}
}
if (r > first+i)
{
for (k=beg_var; k<end_var; k++)
{
dtemp = out_data[r][k];
out_data[r][k] = out_data[first+i][k];
out_data[first+i][k] = dtemp;
}
utemp = beg_order[r];
beg_order[r] = beg_order[first+i];
beg_order[first+i] = utemp;
}
}
loop += 2;
remain = remain-2*elms_p_group;
}
// =================================================================
// If there are less than 2*elms_p_group unclassified elements,
// they will form a group: the last one. If there are 2*elms_p_group
// or more elements, another iteration is performed. In that case,
// the two most outstanding elements are taken.
// One of its elements is chosen (call it 'r') and is grouped
// with the nearest 2*elms_p_group-1 elements to form a group.
// The remaining elements will form the last group.
// ===============================================================
if (remain >= 2*elms_p_group)
{
first = loop*elms_p_group;
for(k=beg_var; k<end_var; k++)
mean_var[k-beg_var]=0.0;
// The mean for each variable is calculated, using the
// elements not yet used
for(k=beg_var; k<end_var; k++)
{
for (j=first; j<n_elements; j++ )
mean_var[k-beg_var]+=out_data[j][k];
mean_var[k-beg_var]=mean_var[k-beg_var]/(n_elements-first);
}
// 'r' is calculated
for (j=first, max_dist=0.0; j<n_elements; j++)
{
for (k=beg_var, distance=0.0; k<end_var; k++)
distance += (out_data[j][k]-mean_var[k-beg_var])*(out_data[j][k]-mean_var[k-beg_var]);
if (distance > max_dist)
{
max_dist = distance;
r = j;
}
}
// 's' is calculated
for (j=first, max_dist=0.0; j<n_elements; j++)
{
for (k=beg_var, distance=0.0; k<end_var; k++)
distance += (out_data[j][k]-out_data[r][k])*(out_data[j][k]-out_data[r][k]);
if (distance > max_dist)
{
max_dist = distance;
s = j;
}
}
// ============================================================
// 'r' will be always less than 's'
// ============================================================
if (s < r)
{
utemp = r;
r = s;
s = utemp;
}
if (r > first)
{
for (j=beg_var; j<end_var; j++)
{
dtemp = out_data[r][j];
out_data[r][j] = out_data[first][j];
out_data[first][j] = dtemp;
}
utemp = beg_order[r];
beg_order[r] = beg_order[first];
beg_order[first] = utemp;
}
// Look for the nearest element to the last element taken,
// and sort the rest of elements following the same criterion
for (i=1; i<elms_p_group; i++)
{
for (j=first+i, min_dist=max_dist; j<n_elements; j++)
{
for (k=beg_var, distance=0.0; k<end_var; k++)
distance += (out_data[j][k]-out_data[first][k])*(out_data[j][k]-out_data[first][k]);
if (distance < min_dist)
{
min_dist = distance;
r = j;
}
}
if (r > first+i)
{
for (k=beg_var; k<end_var; k++)
{
dtemp = out_data[r][k];
out_data[r][k] = out_data[first+i][k];
out_data[first+i][k] = dtemp;
}
utemp = beg_order[r];
beg_order[r] = beg_order[first+i];
beg_order[first+i] = utemp;
}
}
}
delete [] mean_var;
// The mean of each group is calculated and stored
mean = new double* [max_group];
if (!mean)
{
return MIC_OUT_MEM;
}
for (i=0; i<max_group; i++)
{
mean[i] = new double [how_many[ii]];
if (!mean[i])
{
return MIC_OUT_MEM;
}
}
for (k=0; k<max_group; k++)
for (j=beg_var; j<end_var; j++)
{
for (h=0, data_add=0.0, i=k*elms_p_group; h<partition[k]; h++,i++)
data_add += out_data[i][j];
mean[k][j-beg_var] = data_add/(double)partition[k];
}
for (k=0, i=0; k<max_group; k++)
for (h=0; h<partition[k]; h++)
{
for (j=beg_var; j<end_var; j++)
out_data[i][j] = mean[k][j-beg_var];
i++;
}
for (i=0; i<max_group; i++)
delete [] mean[i];
delete [] mean;
// ==============================================================
// Data are 'destandardized' and stored
// ==============================================================
for (j=beg_var; j<end_var; j++)
for (i=0; i<n_elements; i++)
out_data[i][j] = out_data[i][j]*all_stdev[j]+all_mean[j];
// ===============================================================
// Modified data are re-sorted so as to restore the
// order of original data
// ===============================================================
for (i=0 ; i<n_elements ; i++)
for (k=i+1; k<n_elements; k++)
if (beg_order[i] > beg_order[k])
{
for (j=beg_var; j<end_var; j++)
{
dtemp = out_data[i][j];
out_data[i][j] = out_data[k][j];
out_data[k][j] = dtemp;
}
utemp = beg_order[i];
beg_order[i] = beg_order[k];
beg_order[k] = utemp;
}
beg_var = end_var;
}
// ===================================================================
// If groups were defined, variables are re-sorted so as to restore the
// initial order of variables
// ===================================================================
if (group_var>1) {
for (j=0; j<n_var; j++)
for (k=j+1; k<n_var; k++)
if (var[j] > var[k])
{
for (i=0; i<n_elements; i++)
{
dtemp = out_data[i][j];
out_data[i][j] = out_data[i][k];
out_data[i][k] = dtemp;
}
utemp = var[j];
var[j] = var[k];
var[k] = utemp;
}
}
delete [] partition;
}
delete [] beg_order;
delete [] all_stdev;
delete [] all_mean;
delete [] var_order;
delete [] var;
return MIC_OK; // Everything is OK!
}
// =========================================================================
// Takes the data in 'data' and performs an optimal microaggregation
// =========================================================================
//long Do_Opt_Mic ( long n_el, long n_var, long k, double **out_data, long *prog ) {
long CMicroAggregation::Do_Opt_Mic ( long n_el, long n_var, long k, double **out_data) {
double *values;
long *beg_order;
t_graph g;
long i, v;
long res;
values = new double[n_el];
if (!values)
{
return MIC_OUT_MEM;
}
beg_order = new long[n_el];
if (!beg_order)
{
return MIC_OUT_MEM;
}
// Performing optimal microaggregation for each variable
for (v=0; v<n_var; v++) {
// Keep the original sorting of data
for ( i=0; i<n_el; i++)
{
beg_order[i] = i;
values[i] =out_data[i][v];
}
// Construct the graph
res = Graph ( k, n_el, values, beg_order, &g);
if (!res) // An error has ocurred
return res;
// Make the optimal microaggregation and store
// the results in the output file
//res = Opt_Mic ( g, k, beg_order, values, out_data, v, n_var, prog);
res = Opt_Mic ( g, k, beg_order, values, out_data, v, n_var);
delete [] g.nodes;
if (!res) // An error has ocurred
return res;
}
delete [] values;
delete [] beg_order;
return 1;
}
// =========================================================================
// Graph
// =========================================================================
long CMicroAggregation::Graph ( long k, long n, double *v, long *bo, t_graph *g) {
long i, j;
double sse;
// Graph creation
g->n_nodes = n+1; // A node '0' is added
g->nodes = new t_node[n+1];
if (!g->nodes)
{
return MIC_OUT_MEM;
}
for ( i=0; i<n+1; i++ )
{
g->nodes[i].costs = new double[n+1];
if (!g->nodes[i].costs)
{
return MIC_OUT_MEM;
}
for ( j=0; j< n+1; j++ )
g->nodes[i].costs[j]=DBL_MAX;
g->nodes[i].link = -1;
g->nodes[i].cost = DBL_MAX;
}
// Sort the values in the vector
Quick_Sort(v, bo, 0, n-1);
// Fill the costs
for (i=0; i<= n-k; i++)
{
if (i==1) i = k;
for ( j=i+k; (j <= n) && (j < i+2*k); j++ )
{
sse = Sum_Quad_Err ( v, i, j-i);
/* Set the costs */
g->nodes[i].costs[j-(i+k)] = sse;
}
}
return 1;
}
// =========================================================================
// Optimal Microaggregation
// =========================================================================
/*long Opt_Mic ( t_graph g, long k, long *bo, double *v, double **out_data,
long var, long vars, long *prog) {
*/
long CMicroAggregation::Opt_Mic ( t_graph g, long k, long *bo, double *v, double **out_data,
long var, long vars) {
long cp, l, i, j, n = g.n_nodes-1;
double cost = 0.0;
double *means, mean;
// Find the shortest path
g.nodes[0].cost = 0.0;
g.nodes[0].link = 0;
// *prog=n*(n-k)*var;
for ( i=0; i<= n-k; i++ )
{
if (i == 1) i = k;
for ( j=i+k, cp = 0; cp != n; ++j, ++cp )
{ cost = g.nodes[i].cost + g.nodes[i].costs[cp];
// *prog = *prog + 1;
// prlongf ("\rProgress %.2f percent", ((double)(*prog)*100.0)/(n*(n-k)*vars));
if ( cost < g.nodes[j].cost )
{
g.nodes[j].cost = cost;
g.nodes[j].link = i;
}
}
}
for ( i=0; i<n+1; i++ )
delete [] g.nodes[i].costs;
// Means are used to show if an element belongs to a class
means = new double[n];
if (!means)
{
return MIC_OUT_MEM;
}
// Make the classes
for ( j=n; j!=0; j=i )
{
i = g.nodes[j].link;
// The mean for that class
mean = Mean ( v, i, j-i );
for ( l=i+1; l<=j; l++)
means[bo[l-1]]=mean;
}
// Resulting microaggregated data are written in the column 'var'
for (i=0; i<n; i++)
out_data[i][var]= means[i];
delete [] means;
return 1;
}
// =========================================================================
// Quick sort
// =========================================================================
void CMicroAggregation::swap(double *a, double *b)
{
float temp;
temp=*a;
*a=*b;
*b=temp;
}
void CMicroAggregation::swap_i(long *a, long *b)
{
long temp;
temp=*a;
*a=*b;
*b=temp;
}
void CMicroAggregation::partition(double *vector, long *bo, long inf, long sup, float x, long *k)
{
long k2;
*k=inf-1;
k2=sup+1;
while(k2!=(*k+1))
{
if(vector[*k+1]<=x)
(*k)++;
else if( vector[k2-1]>=x)
k2--;
else
{
swap(&(vector[*k+1]),&(vector[k2-1]));
swap_i(&(bo[*k+1]),&(bo[k2-1]));
(*k)++;
k2--;
}
}
}
void CMicroAggregation::Quick_Sort(double *vector, long *bo, long inf, long sup)
{
long k;
if(inf <=sup)
{
partition(vector,bo,inf+1,sup,vector[inf],&k);
swap(&(vector[inf]),&(vector[k]));
swap_i(&(bo[inf]),&(bo[k]));
Quick_Sort(vector,bo,inf,k-1);
Quick_Sort(vector,bo,k+1,sup);
}
}
// =========================================================================
// Some statistics
// =========================================================================
double CMicroAggregation::Mean ( double *fp, long y, long n) {
double sum = 0.0;
long i;
for (i=y; i<n+y; i++)
sum += fp[i];
return (sum/(1.0*n));
}
double CMicroAggregation::Sum_Quad_Err ( double *fp, long y, long n) {
long i;
double sum = 0.0;
double m = Mean ( fp, y, n);
for (i=y; i<n+y; ++i)
sum += (fp[i]-m)*(fp[i]-m);
return (sum);
}