-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing_data.py
146 lines (119 loc) · 4.93 KB
/
preprocessing_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pandas as pd
import numpy as np
import os
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.model_selection import KFold
import matplotlib.pyplot as plt
import seaborn as sns
def load_and_preprocess_data(file_path, target_column):
dataset = pd.read_csv(file_path)
# Handle missing values
imputer = SimpleImputer(strategy="most_frequent")
dataset = pd.DataFrame(imputer.fit_transform(dataset), columns=dataset.columns)
glucose_bins = [0, 140, float("inf")]
glucose_labels = [0, 1] # 0: Normal, 1: High
dataset["Glucose_class"] = pd.cut(
dataset["Glucose"], bins=glucose_bins, labels=glucose_labels, right=False
)
blood_pressure_bins = [0, 80, float("inf")]
blood_pressure_labels = [0, 1] # 0: Normal, 1: High
dataset["BloodPressure_class"] = pd.cut(
dataset["BloodPressure"],
bins=blood_pressure_bins,
labels=blood_pressure_labels,
right=False,
)
skin_bins = [0, dataset["SkinThickness"].median(), float("inf")]
skin_labels = [0, 1]
dataset["SkinThickness_class"] = pd.cut(
dataset["SkinThickness"], bins=skin_bins, labels=skin_labels, right=False
)
insulin_bins = [0, 125, float("inf")]
insulin_labels = [0, 1] # 0: Normal, 1: High
dataset["Insulin_class"] = pd.cut(
dataset["Insulin"], bins=insulin_bins, labels=insulin_labels, right=False
)
bmi_bins = [0, 25.0, 30.0, 35.0, 40.0, float("inf")]
bmi_labels = [0, 1, 2, 3, 4]
dataset["BMI_class"] = pd.cut(
dataset["BMI"], bins=bmi_bins, labels=bmi_labels, right=False
)
dpf_bins = [0, dataset["DiabetesPedigreeFunction"].median(), float("inf")]
dpf_labels = [0, 1]
dataset["DiabetesPedigreeFunction_class"] = pd.cut(
dataset["DiabetesPedigreeFunction"],
bins=dpf_bins,
labels=dpf_labels,
right=False,
)
age_bins = [0, 30, 60, float("inf")]
age_labels = [0, 1, 2] # 0: muda, 1: dewasa, 2: lansia
dataset["Age_class"] = pd.cut(
dataset["Age"], bins=age_bins, labels=age_labels, right=False
)
# Drop original columns used for classification
dataset.drop(
columns=[
"Glucose",
"BloodPressure",
"SkinThickness",
"Insulin",
"BMI",
"DiabetesPedigreeFunction",
"Age",
],
inplace=True,
)
# Normalize the remaining data
scaler = StandardScaler()
scaled_features = scaler.fit_transform(dataset.drop(columns=[target_column]))
labels = dataset[target_column].values
return scaled_features, labels
def split_data_kfold(scaled_features, labels, n_splits=10, test_size=0.1):
# First split the data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
scaled_features, labels, test_size=test_size, random_state=42
)
# Now split the training data using KFold
kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
folds = []
for train_index, val_index in kf.split(X_train):
X_train_fold, X_val_fold = X_train[train_index], X_train[val_index]
y_train_fold, y_val_fold = y_train[train_index], y_train[val_index]
folds.append((X_train_fold, X_val_fold, y_train_fold, y_val_fold))
return folds, (X_test, y_test)
def save_split_data_kfold(folds, test_data, directory_path):
for i, fold in enumerate(folds):
X_train, X_val, y_train, y_val = fold
fold_directory_path = os.path.join(directory_path, f"Fold_{i + 1}")
os.makedirs(fold_directory_path, exist_ok=True)
pd.DataFrame(X_train).to_csv(
os.path.join(fold_directory_path, "X_train.csv"), index=False
)
pd.DataFrame(X_val).to_csv(
os.path.join(fold_directory_path, "X_val.csv"), index=False
)
pd.DataFrame(y_train).to_csv(
os.path.join(fold_directory_path, "y_train.csv"), index=False
)
pd.DataFrame(y_val).to_csv(
os.path.join(fold_directory_path, "y_val.csv"), index=False
)
X_test, y_test = test_data
pd.DataFrame(X_test).to_csv(os.path.join(directory_path, "X_test.csv"), index=False)
pd.DataFrame(y_test).to_csv(os.path.join(directory_path, "y_test.csv"), index=False)
def visualize_preprocessing(original_data, scaled_features, target_column):
fig, axes = plt.subplots(1, 2, figsize=(15, 5))
sns.boxplot(data=original_data.drop(columns=[target_column]), ax=axes[0])
axes[0].set_title("Original Data")
sns.boxplot(
data=pd.DataFrame(
scaled_features, columns=original_data.drop(columns=[target_column]).columns
),
ax=axes[1],
)
axes[1].set_title("Scaled Data")
plt.tight_layout()
return fig