Skip to content

Commit

Permalink
Typo
Browse files Browse the repository at this point in the history
  • Loading branch information
edomora97 committed Jun 5, 2020
1 parent dc63534 commit a0efd55
Show file tree
Hide file tree
Showing 3 changed files with 8 additions and 8 deletions.
4 changes: 2 additions & 2 deletions lectures/2020-05-19.tex
Original file line number Diff line number Diff line change
Expand Up @@ -50,9 +50,9 @@ \section{Using Simulation Error Method}
\begin{tikzpicture}[node distance=2cm,auto,>=latex']
\draw (0,2) rectangle ++(2,2);
\node[align=center] at (1,3) {Model of\\the system};
\node[draw, ellipse, align=center] at (1,0) (m) {Model\\$\mathcal{M}(c)$};
\node[draw, ellipse, align=center] at (1,0) (m) {Model\\$\mathcal{M}(\theta)$};
\node[sum] at (4,0) (sum) {};
\node[int] at (4,-1.5) (J) {$J(c)$};
\node[int] at (4,-1.5) (J) {$J(\theta)$};

\draw[<-] (m) -- (-1,0) node[left] {$\tilde{F}(t)$};
\draw[->] (m) -- (sum) node[pos=0.8] {+} node[pos=0.5] {$\hat{y}(t)$};
Expand Down
10 changes: 5 additions & 5 deletions lectures/2020-05-25.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Minimum variance control}
\chapter{Minimum Variance Control}
\newlecture{Sergio Savaresi}{25/05/2020}

Design and analysis of feedback systems.
Expand Down Expand Up @@ -156,7 +156,7 @@ \chapter{Minimum variance control}
S: y(t) = ay(t-1) + b_0u(t-1) + b_1u(t-2) \qquad y(t) = \frac{b_0+b_1z^{-1}}{1-az^{-1}}u(t-1)
\]

We assume that $y^0(t)=\overline{y}$ (regulation problem) and the system is noise-free.
We assume that $y^0(t)=\overline{y}^0$ (regulation problem) and the system is noise-free.
\begin{itemize}
\item $b_0\ne 0$
\item Root of numerator must be inside the unit circle
Expand Down Expand Up @@ -187,7 +187,7 @@ \chapter{Minimum variance control}
\begin{tikzpicture}[node distance=2cm,auto,>=latex']
\node[sum] at (0,0) (sum) {};
\node[int] at (1.5,0) (b1) {$\frac{1}{b_0+b_1z^{-1}}$};
\node[int] at (5,0) (b2) {$z^{-1}\frac{b_0+b_1z^{-1}}{1-az^[-1]}$};
\node[int] at (5,0) (b2) {$z^{-1}\frac{b_0+b_1z^{-1}}{1-az^{-1}}$};
\node[int] at (3,-1.5) (b3) {$a$};

\draw[->] (sum) -- (b1);
Expand Down Expand Up @@ -231,7 +231,7 @@ \chapter{Minimum variance control}

Now we must compute the 1-step predictor of the system:
\[
S: y(t) = \frac{b_1+b_1z^{-1}}{1-az^{-1}}u(t-1) + \frac{1}{1-az^{-1}}e(t)
S: y(t) = \frac{b_0+b_1z^{-1}}{1-az^{-1}}u(t-1) + \frac{1}{1-az^{-1}}e(t)
\]
Note that this is an $ARMAX(1,0,1+1)=ARX(1,2)$.
\[
Expand Down Expand Up @@ -268,7 +268,7 @@ \chapter{Minimum variance control}
\draw[->] (sum) -- (b1);
\draw[->] (b1) -- (b2) node[pos=0.5] {$u(t)$};
\draw[->] (b3) -| (sum) node[pos=0.9] {-};
\draw[<-] (sum) -- ++(-1.5,0) node[left] {$\overline{y}^0$} node[pos=0.2] {+};
\draw[<-] (sum) -- ++(-1.5,0) node[left] {$y^0(t)$} node[pos=0.2] {+};
\draw[->] (sum2) -- ++(1.5,0) node[right] {$y(t)$};
\draw[->] (b2) -- (sum2);
\draw[->] (b4) -- (sum2);
Expand Down
2 changes: 1 addition & 1 deletion lectures/2020-05-27.tex
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

To check the closed-loop stability:
\begin{itemize}
\item compute the \emph{loop-function} $L(z) = F_1(z) F_2(z)$
\item compute the \emph{loop-function} $L(z) = F_1(z) F_2(z)$ (\textbf{do not simplify!})
\item Build the \emph{characteristic polynomial} $\chi(z) = L_N(z) + L_D(z)$ (sum of numerator and denominator)
\item Find the roots of $\chi(z)$, closed loop system is asymptotically stable iff all the roots of $\chi(z)$ are strictly inside the unit circle
\end{itemize}
Expand Down

0 comments on commit a0efd55

Please sign in to comment.