#include "cubeai/base/cubeai_types.h"
#include "cubeai/rl/algorithms/td/q_learning.h"
#include "cubeai/rl/policies/epsilon_greedy_policy.h"
#include "cubeai/rl/trainers/rl_serial_agent_trainer.h"
#include "rlenvs/utils/io/csv_file_writer.h"
#include "rlenvs/envs/api_server/apiserver.h"
#include "rlenvs/envs/gymnasium/toy_text/cliff_world_env.h"
#include <iostream>
#include <iostream>
#include <unordered_map>
#include <boost/log/trivial.hpp>
namespace rl_example_10{
const std::string SERVER_URL = "http://0.0.0.0:8001/api";
const std::string SOLUTION_FILE = "qlearning_cliff_walking_v1.csv";
const std::string REWARD_PER_ITR = "reward_per_itr.csv";
const std::string POLICY = "policy.csv";
using cuberl::real_t;
using cuberl::uint_t;
using cuberl::rl::policies::EpsilonGreedyPolicy;
using cuberl::rl::algos::td::QLearningSolver;
using cuberl::rl::algos::td::QLearningConfig;
using cuberl::rl::policies::EpsilonDecayOption;
using cuberl::rl::RLSerialAgentTrainer;
using cuberl::rl::RLSerialTrainerConfig;
using rlenvscpp::envs::RESTApiServerWrapper;
typedef rlenvscpp::envs::gymnasium::CliffWorld env_type;
}
int main(){
BOOST_LOG_TRIVIAL(info)<<"Starting agent training";
using namespace rl_example_10;
try{
RESTApiServerWrapper server(SERVER_URL, true);
// create the environment
env_type env(server);
BOOST_LOG_TRIVIAL(info)<<"Creating environment...";
std::unordered_map<std::string, std::any> options;
env.make("v0", options);
env.reset();
BOOST_LOG_TRIVIAL(info)<<"Done...";
BOOST_LOG_TRIVIAL(info)<<"Number of states="<<env.n_states();
BOOST_LOG_TRIVIAL(info)<<"Number of actions="<<env.n_actions();
// create an e-greedy policy. Use the number
// of actions as a seed. Use a constant epsilon
EpsilonGreedyPolicy policy(0.01, env.n_actions(),
EpsilonDecayOption::NONE);
QLearningConfig qlearn_config;
qlearn_config.gamma = 0.9;
qlearn_config.eta = 0.5;
qlearn_config.tolerance = 1.0e-8;
qlearn_config.max_num_iterations_per_episode = 1000;
qlearn_config.path = SOLUTION_FILE;
QLearningSolver<env_type, EpsilonGreedyPolicy> algorithm(qlearn_config, policy);
RLSerialTrainerConfig trainer_config = {10, 1000, 1.0e-8};
RLSerialAgentTrainer<env_type,
QLearningSolver<env_type, EpsilonGreedyPolicy>> trainer(trainer_config, algorithm);
auto info = trainer.train(env);
BOOST_LOG_TRIVIAL(info)<<info;
// save the reward the agent achieved per training epoch
auto reward = trainer.episodes_total_rewards();
auto iterations = trainer.n_itrs_per_episode();
rlenvscpp::utils::io::CSVWriter csv_writer(REWARD_PER_ITR);
csv_writer.open();
csv_writer.write_column_names({"epoch", "reward"});
auto epoch = static_cast<uint_t>(0);
for(auto val: reward){
std::tuple<uint_t, real_t> row = {epoch++, val};
csv_writer.write_row(row);
}
csv_writer.close();
// build the policy
algorithm.build_policy().save(POLICY);
}
catch(std::exception& e){
std::cout<<e.what()<<std::endl;
}
catch(...){
std::cout<<"Unknown exception occured"<<std::endl;
}
return 0;
}