forked from HaozheZhao/MIC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
175 lines (142 loc) · 6.44 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import logging
import os
import sys
import json
import numpy as np
from typing import Dict
import datasets
import transformers
import torch
from transformers import set_seed, Trainer, TrainerCallback
from transformers.trainer_utils import get_last_checkpoint
from os.path import join
from arguments import get_args
from tasks.utils import *
import warnings
import time
warnings.filterwarnings("ignore")
logger = logging.getLogger(__name__)
class ProfCallback(TrainerCallback):
def __init__(self, prof):
self.prof = prof
def on_step_end(self, args, state, control, **kwargs):
self.prof.step()
def train(trainer, resume_from_checkpoint=None, last_checkpoint=None):
checkpoint = None
print("start training")
if resume_from_checkpoint is not None:
checkpoint = resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
# trainer.save_model()
# with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,
# torch.profiler.ProfilerActivity.CUDA],
# schedule=torch.profiler.schedule(skip_first=3, wait=1, warmup=1, active=2, repeat=2),
# on_trace_ready=torch.profiler.tensorboard_trace_handler('hf-training-trainer'),
# profile_memory=True,
# with_stack=True,
# record_shapes=True) as prof:
# trainer.add_callback(ProfCallback(prof=prof))
# train_result = trainer.train(resume_from_checkpoint=checkpoint)
# trainer.save_model()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
trainer.log_best_metrics()
def evaluate(trainer):
logger.info("*** Evaluate ***")
eval_metrics = trainer.evaluate()
if 'eval_BleuScore' in eval_metrics:
eval_bleu = eval_metrics.pop('eval_BleuScore')
trainer.log_metrics("eval", eval_metrics)
trainer.save_metrics("eval", eval_metrics)
test_metrics = trainer.evaluate(eval_dataset=trainer.predict_dataset, metric_key_prefix="test",)
if 'test_BleuScore' in test_metrics:
test_bleu = test_metrics.pop('test_BleuScore')
trainer.log_metrics("test", test_metrics)
trainer.save_metrics("test", test_metrics)
def predict(trainer, predict_dataset=None):
if predict_dataset is None:
logger.info("No dataset is available for testing")
elif isinstance(predict_dataset, dict):
for dataset_name, d in predict_dataset.items():
logger.info("*** Predict: %s ***" % dataset_name)
predictions, labels, metrics = trainer.predict(
d, metric_key_prefix="predict"
)
predictions = predictions.numpy()
if 'test_BleuScore' in metrics:
test_bleu = metrics.pop('test_BleuScore')
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
else:
logger.info("*** Predict ***")
predictions, labels, metrics = trainer.predict(
predict_dataset, metric_key_prefix="predict"
)
if 'predict_BleuScore' in metrics:
predict_bleu = metrics.pop('predict_BleuScore')
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
with open(os.path.join('./checkpoints/', trainer.model_args.experiment_name, "predictions.json"), "w") as f:
json.dump(predictions.tolist(), f, indent=4)
with open(os.path.join('./checkpoints/', trainer.model_args.experiment_name, "labels.json"), "w") as f:
json.dump(labels.tolist(), f, indent=4)
if __name__ == "__main__":
args = get_args()
model_args, data_args, training_args = args
# log_file = join(training_args.output_dir+"/log_test.txt")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
# handlers=[logging.StreamHandler(sys.stdout),logging.FileHandler(log_file)],
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
if not os.path.isdir("checkpoints") or not os.path.exists("checkpoints"):
os.mkdir("checkpoints")
if data_args.dataset_name.lower() in ["flickr"]:
from tasks.vqa.get_trainer import get_trainer
else:
raise NotImplementedError(
"Task {} is not implemented. Please choose a task from: {}".format(data_args.dataset_name))
set_seed(training_args.seed)
trainer, predict_dataset = get_trainer(args)
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
if training_args.do_train:
train(trainer, training_args.resume_from_checkpoint, last_checkpoint)
if training_args.do_eval:
evaluate(trainer)
if training_args.do_predict:
predict(trainer, predict_dataset)