-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_striker.py
156 lines (139 loc) · 8.27 KB
/
train_striker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import tensorflow as tf
import numpy as np
from utils.dataset import _ds
from utils.execution import ExperimentHandler
from losses.constraint_functions import air_hockey_table, air_hockey_puck
from losses.hittting import HittingLoss
from models.iiwa_planner_boundaries import IiwaPlannerBoundariesHitting
from utils.constants import Limits, TableConstraint, UrdfModels
class args:
batch_size = 128
working_dir = './trainings'
out_name = 'name_of_the_model'
log_interval = 100
learning_rate = 5e-5
dataset_path = "./datasets/air_hockey_hitting/train/data.tsv"
train_data = np.loadtxt(args.dataset_path, delimiter='\t').astype(np.float32)
train_size = train_data.shape[0]
train_ds = tf.data.Dataset.from_tensor_slices(train_data)
val_data = np.loadtxt(args.dataset_path.replace("train", "val"), delimiter='\t').astype(np.float32)
val_size = val_data.shape[0]
val_ds = tf.data.Dataset.from_tensor_slices(val_data)
urdf_path = os.path.join(os.path.dirname(__file__), UrdfModels.striker)
N = 15
opt = tf.keras.optimizers.Adam(args.learning_rate)
loss = HittingLoss(N, urdf_path, air_hockey_table, air_hockey_puck, Limits.q_dot, Limits.q_ddot, Limits.q_dddot, Limits.tau)
model = IiwaPlannerBoundariesHitting(N, 3, 2, loss.bsp, loss.bsp_t)
experiment_handler = ExperimentHandler(args.working_dir, args.out_name, args.log_interval, model, opt)
train_step = 0
val_step = 0
best_epoch_loss = 1e10
best_unscaled_epoch_loss = 1e10
for epoch in range(30000):
# training
dataset_epoch = train_ds.shuffle(train_size)
dataset_epoch = dataset_epoch.batch(args.batch_size).prefetch(args.batch_size)
epoch_loss = []
unscaled_epoch_loss = []
experiment_handler.log_training()
q_dot_losses = []
q_ddot_losses = []
q_dddot_losses = []
constraint_losses = []
torque_losses = []
puck_losses = []
for i, d in _ds('Train', dataset_epoch, train_size, epoch, args.batch_size):
with tf.GradientTape(persistent=True) as tape:
q_cps, t_cps = model(d)
model_loss, constraint_loss, q_dot_loss, q_ddot_loss, q_dddot_loss, torque_loss, puck_loss, \
q, q_dot, q_ddot, q_dddot, torque, centrifugal, xyz, t, t_cumsum, t_loss, dt, unscaled_model_loss, jerk_loss, \
int_torque_loss, centrifugal_loss = loss(q_cps, t_cps, d)
z_loss_abs = np.mean(np.abs(xyz[..., -1, 0] - TableConstraint.Z), axis=-1)
grads = tape.gradient(model_loss, model.trainable_variables)
opt.apply_gradients(zip(grads, model.trainable_variables))
q_dot_losses.append(q_dot_loss)
q_ddot_losses.append(q_ddot_loss)
q_dddot_losses.append(q_dddot_loss)
constraint_losses.append(constraint_loss)
torque_losses.append(torque_loss)
puck_losses.append(puck_loss)
epoch_loss.append(model_loss)
unscaled_epoch_loss.append(unscaled_model_loss)
with tf.summary.record_if(train_step % args.log_interval == 0):
tf.summary.scalar('metrics/model_loss', tf.reduce_mean(model_loss), step=train_step)
tf.summary.scalar('metrics/unscaled_model_loss', tf.reduce_mean(unscaled_model_loss), step=train_step)
tf.summary.scalar('metrics/constraint_loss', tf.reduce_mean(constraint_loss), step=train_step)
tf.summary.scalar('metrics/torque_loss', tf.reduce_mean(torque_loss), step=train_step)
tf.summary.scalar('metrics/puck_loss', tf.reduce_mean(puck_loss), step=train_step)
tf.summary.scalar('metrics/int_torque_loss', tf.reduce_mean(int_torque_loss), step=train_step)
tf.summary.scalar('metrics/z_loss_abs', tf.reduce_mean(z_loss_abs), step=train_step)
tf.summary.scalar('metrics/q_dot_loss', tf.reduce_mean(q_dot_loss), step=train_step)
tf.summary.scalar('metrics/q_ddot_loss', tf.reduce_mean(q_ddot_loss), step=train_step)
tf.summary.scalar('metrics/q_dddot_loss', tf.reduce_mean(q_dddot_loss), step=train_step)
tf.summary.scalar('metrics/t', tf.reduce_mean(t), step=train_step)
tf.summary.scalar('metrics/jerk_loss', tf.reduce_mean(jerk_loss), step=train_step)
tf.summary.scalar('metrics/centrifugal_loss', tf.reduce_mean(centrifugal_loss), step=train_step)
train_step += 1
q_dot_losses = tf.reduce_mean(tf.concat(q_dot_losses, 0))
q_ddot_losses = tf.reduce_mean(tf.concat(q_ddot_losses, 0))
q_dddot_losses = tf.reduce_mean(tf.concat(q_dddot_losses, 0))
constraint_losses = tf.reduce_mean(tf.concat(constraint_losses, 0))
torque_losses = tf.reduce_mean(tf.concat(torque_losses, 0))
puck_losses = tf.reduce_mean(tf.concat(puck_losses, 0))
loss.alpha_update(q_dot_losses, q_ddot_losses, q_dddot_losses, constraint_losses, torque_losses, puck_losses)
epoch_loss = tf.reduce_mean(tf.concat(epoch_loss, -1))
unscaled_epoch_loss = tf.reduce_mean(tf.concat(unscaled_epoch_loss, -1))
with tf.summary.record_if(True):
tf.summary.scalar('epoch/loss', epoch_loss, step=epoch)
tf.summary.scalar('epoch/unscaled_loss', unscaled_epoch_loss, step=epoch)
tf.summary.scalar('epoch/alpha_q_dot', loss.alpha_q_dot, step=epoch)
tf.summary.scalar('epoch/alpha_q_ddot', loss.alpha_q_ddot, step=epoch)
tf.summary.scalar('epoch/alpha_q_dddot', loss.alpha_q_dddot, step=epoch)
tf.summary.scalar('epoch/alpha_constraint', loss.alpha_constraint, step=epoch)
tf.summary.scalar('epoch/alpha_torque', loss.alpha_torque, step=epoch)
tf.summary.scalar('epoch/alpha_obstacle', loss.alpha_obstacle, step=epoch)
# validation
dataset_epoch = val_ds.shuffle(val_size)
dataset_epoch = dataset_epoch.batch(args.batch_size).prefetch(args.batch_size)
epoch_loss = []
unscaled_epoch_loss = []
experiment_handler.log_validation()
for i, d in _ds('Val', dataset_epoch, val_size, epoch, args.batch_size):
q_cps, t_cps = model(d)
model_loss, constraint_loss, q_dot_loss, q_ddot_loss, q_dddot_loss, torque_loss, puck_loss, \
q, q_dot, q_ddot, q_dddot, torque, centrifugal, xyz, t, t_cumsum, t_loss, dt, unscaled_model_loss, jerk_loss, \
int_torque_loss, centrifugal_loss = loss(q_cps, t_cps, d)
z_loss_abs = np.mean(np.abs(xyz[..., -1, 0] - TableConstraint.Z), axis=-1)
epoch_loss.append(model_loss)
unscaled_epoch_loss.append(unscaled_model_loss)
with tf.summary.record_if(val_step % args.log_interval == 0):
tf.summary.scalar('metrics/model_loss', tf.reduce_mean(model_loss), step=val_step)
tf.summary.scalar('metrics/unscaled_model_loss', tf.reduce_mean(unscaled_model_loss), step=val_step)
tf.summary.scalar('metrics/constraint_loss', tf.reduce_mean(constraint_loss), step=val_step)
tf.summary.scalar('metrics/torque_loss', tf.reduce_mean(torque_loss), step=val_step)
tf.summary.scalar('metrics/puck_loss', tf.reduce_mean(puck_loss), step=val_step)
tf.summary.scalar('metrics/int_torque_loss', tf.reduce_mean(int_torque_loss), step=val_step)
tf.summary.scalar('metrics/z_loss_abs', tf.reduce_mean(z_loss_abs), step=val_step)
tf.summary.scalar('metrics/q_dot_loss', tf.reduce_mean(q_dot_loss), step=val_step)
tf.summary.scalar('metrics/q_ddot_loss', tf.reduce_mean(q_ddot_loss), step=val_step)
tf.summary.scalar('metrics/q_dddot_loss', tf.reduce_mean(q_dddot_loss), step=val_step)
tf.summary.scalar('metrics/t', tf.reduce_mean(t), step=val_step)
tf.summary.scalar('metrics/jerk_loss', tf.reduce_mean(jerk_loss), step=val_step)
tf.summary.scalar('metrics/centrifugal_loss', tf.reduce_mean(centrifugal_loss), step=val_step)
val_step += 1
epoch_loss = tf.reduce_mean(tf.concat(epoch_loss, -1))
unscaled_epoch_loss = tf.reduce_mean(tf.concat(unscaled_epoch_loss, -1))
with tf.summary.record_if(True):
tf.summary.scalar('epoch/loss', epoch_loss, step=epoch)
tf.summary.scalar('epoch/unscaled_loss', unscaled_epoch_loss, step=epoch)
w = 25
if epoch % w == w - 1:
experiment_handler.save_last()
if best_unscaled_epoch_loss > unscaled_epoch_loss:
best_unscaled_epoch_loss = unscaled_epoch_loss
experiment_handler.save_best()
else:
if best_epoch_loss > epoch_loss:
best_epoch_loss = epoch_loss
experiment_handler.save_best()