-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_S.py
288 lines (240 loc) · 13.6 KB
/
model_S.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.nn.functional as F
import utils
class Reliable_Memory(nn.Module):
def __init__(self, num_class, feat_dim):
super(Reliable_Memory, self).__init__()
self.num_class = num_class
self.feat_dim = feat_dim
self.proto_momentum = 0.001
self.proto_num = 1
self.proto_vectors = torch.nn.Parameter(torch.zeros([self.num_class, self.proto_num, self.feat_dim]), requires_grad=False)
def init(self, args, net, train_loader):
print('Memory initialization in progress...')
with torch.no_grad():
net.eval()
pfeat_total = {}
temp_loader = data.DataLoader(train_loader.dataset, batch_size=1, shuffle=False, num_workers=4)
for sample in temp_loader:
_data, vid_label, point_anno = sample['data'], sample['vid_label'], sample['point_label']
outputs = net(_data.to(args.device), vid_label.to(args.device))
embeded_feature = outputs['embeded_feature']
for b in range(point_anno.shape[0]):
gt_class = torch.nonzero(vid_label[b]).squeeze(1).numpy()
for c in gt_class:
select_id = torch.nonzero(point_anno[b, :, c]).squeeze(1)
if select_id.shape[0] > 0:
act_feat = embeded_feature[b, select_id, :]
if c not in pfeat_total.keys():
pfeat_total[c] = act_feat
else:
pfeat_total[c] = torch.cat([pfeat_total[c], act_feat])
for c in range(self.num_class):
cluster_centers = pfeat_total[c].mean(dim=0, keepdim=True)
self.proto_vectors[c] = cluster_centers
def update(self, args, feats, act_seq, vid_label):
self.proto_vectors = self.proto_vectors.to(args.device)
feat_list = {}
for b in range(act_seq.shape[0]):
gt_class = torch.nonzero(vid_label[b]).cpu().squeeze(1).numpy()
for c in gt_class:
select_id = torch.nonzero(act_seq[b, :, c]).squeeze(1)
if select_id.shape[0] > 0:
act_feat = feats[b, select_id, :]
if c not in feat_list.keys():
feat_list[c] = act_feat
else:
feat_list[c] = torch.cat(feat_list[c], act_feat)
for c in feat_list.keys():
if len(feat_list[c]) > 0:
feat_update = feat_list[c].mean(dim=0, keepdim=True)
self.proto_vectors[c] = (1 - self.proto_momentum) * self.proto_vectors[c] + self.proto_momentum * feat_update
class Reliabilty_Aware_Block(nn.Module):
def __init__(self, input_dim, dropout, num_heads=8, dim_feedforward=128, pos_embed=False):
super(Reliabilty_Aware_Block, self).__init__()
self.conv_query = nn.Conv1d(input_dim, input_dim, kernel_size=1, stride=1, padding=0)
self.conv_key = nn.Conv1d(input_dim, input_dim, kernel_size=1, stride=1, padding=0)
self.conv_value = nn.Conv1d(input_dim, input_dim, kernel_size=1, stride=1, padding=0)
self.self_atten = nn.MultiheadAttention(input_dim, num_heads=num_heads, dropout=0.1)
self.linear1 = nn.Linear(input_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, input_dim)
self.norm1 = nn.LayerNorm(input_dim)
self.norm2 = nn.LayerNorm(input_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, features, attn_mask=None,):
src = features.permute(2, 0, 1)
q = k = src
q = self.conv_query(features).permute(2, 0, 1)
k = self.conv_key(features).permute(2, 0, 1)
src2, attn = self.self_atten(q, k, src, attn_mask=attn_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(F.relu(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
src = src.permute(1, 2, 0)
return src, attn
class Encoder(nn.Module):
def __init__(self, args):
super(Encoder, self).__init__()
self.dataset = args.dataset
self.feature_dim = args.feature_dim
RAB_args = args.RAB_args
self.RAB = nn.ModuleList([
Reliabilty_Aware_Block(
input_dim=self.feature_dim,
dropout=RAB_args['drop_out'],
num_heads=RAB_args['num_heads'],
dim_feedforward=RAB_args['dim_feedforward'])
for i in range(RAB_args['layer_num'])
])
self.feature_embedding = nn.Sequential(
nn.Conv1d(in_channels=self.feature_dim, out_channels=self.feature_dim, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
)
def forward(self, input_features, prototypes=None):
'''
input_feature: [B,T,F]
prototypes:[C,1,F]
'''
B, T, F = input_features.shape
input_features = input_features.permute(0, 2, 1) #[B,F,T]
prototypes = prototypes.to(input_features.device) #[C,1,F]
prototypes = prototypes.view(1,F,-1).expand(B,-1,-1) #[B,F,C]
if hasattr(self, 'RAB'):
layer_features = torch.cat([input_features, prototypes], dim=2) #[B,F,T+C]
for layer in self.RAB:
layer_features, _ = layer(layer_features)
input_features = layer_features[:, :, :T] #[B,F,T]
embeded_features = self.feature_embedding(input_features) #[B,F,T]
return embeded_features
class S_Model(nn.Module):
def __init__(self, args):
super(S_Model, self).__init__()
self.feature_dim = args.feature_dim
self.num_class = args.num_class
self.r_act = args.r_act
self.dropout = args.dropout
self.memory = Reliable_Memory(self.num_class, self.feature_dim)
self.encoder = Encoder(args)
self.classifier = nn.Sequential(
nn.Dropout(self.dropout),
nn.Conv1d(in_channels=self.feature_dim, out_channels=self.num_class + 1, kernel_size=1, stride=1, padding=0, bias=False)
)
self.sigmoid = nn.Sigmoid()
self.bce_criterion = nn.BCELoss(reduction='none')
self.lambdas = args.lambdas
def forward(self, input_features, vid_labels=None):
'''
input_feature: [B,T,F]
'''
# >> Encoder and classifier
embeded_feature = self.encoder(input_features, self.memory.proto_vectors) #[B,F,T]
cas = self.classifier(embeded_feature) #[B,C+1,T]
cas = cas.permute(0, 2, 1) #[B,T,C+1]
cas = self.sigmoid(cas) #[B,T,C+1]
# class-Specific activation sequence
cas_S = cas[:, :, :-1] #[B,T,C]
# class-Agnostic attention sequence (background)
bkg_score = cas[:, :, -1] #[B,T]
# >> Fusion
cas_P = cas_S * (1 - bkg_score.unsqueeze(2)) #[B,T,C]
cas_fuse = torch.cat((cas_P, bkg_score.unsqueeze(2)), dim=2) #[B,T,C+1]
# >> Top-k pooling
value, _ = cas_S.sort(descending=True, dim=1)
k_act = max(1, input_features.shape[1] // self.r_act)
topk_scores = value[:, :k_act, :]
if vid_labels is None:
vid_score = torch.mean(topk_scores, dim=1)
else:
vid_score = (torch.mean(topk_scores, dim=1) * vid_labels) + \
(torch.mean(cas_S, dim=1) * (1 - vid_labels))
return dict(
cas_fuse = cas_fuse, #[B,T,C+1]
cas_S = cas_S, #[B,T,C+1]
vid_score = vid_score, #[B,C]
embeded_feature = embeded_feature.permute(0, 2, 1), #[B,T,F]
)
def criterion(self, args, outputs, vid_label, point_label):
vid_score, embeded_feature, cas_fuse = outputs['vid_score'], outputs['embeded_feature'], outputs['cas_fuse']
point_label = torch.cat((point_label, torch.zeros((point_label.shape[0], point_label.shape[1], 1)).to(args.device)), dim=2)
act_seed, bkg_seed = utils.select_seed(cas_fuse[:, :, -1].detach().cpu(), point_label.detach().cpu())
loss_dict = {}
# >> base loss
loss_vid, loss_frame, loss_frame_bkg = self.base_loss_func(args, act_seed, bkg_seed, vid_score, vid_label, cas_fuse, point_label)
loss_dict["loss_vid"] = loss_vid
loss_dict["loss_frame"] = loss_frame
loss_dict["loss_frame_bkg"] = loss_frame_bkg
# >> feat loss
loss_contrastive = self.feat_loss_func(args, embeded_feature, act_seed, bkg_seed, vid_label)
loss_dict["loss_contrastive"] = loss_contrastive
# >> update memory
self.memory.update(args, embeded_feature.detach(), act_seed, vid_label)
loss_total = self.lambdas[0] * loss_vid + self.lambdas[1] * loss_frame \
+ self.lambdas[2] * loss_frame_bkg + self.lambdas[3] * loss_contrastive
loss_dict["loss_total"] = loss_total
return loss_total, loss_dict
def base_loss_func(self, args, act_seed, bkg_seed, vid_score, vid_label, cas_sigmoid_fuse, point_anno):
# >> video-level loss
loss_vid = self.bce_criterion(vid_score, vid_label)
loss_vid = loss_vid.mean()
# >> frame-level loss
loss_frame = 0
loss_frame_bkg = 0
# act frame loss
act_seed = act_seed.to(args.device)
focal_weight_act = (1 - cas_sigmoid_fuse ) * point_anno + cas_sigmoid_fuse * (1 - point_anno)
focal_weight_act = focal_weight_act ** 2
weighting_seq_act = point_anno.max(dim=2, keepdim=True)[0]
num_actions = point_anno.max(dim=2)[0].sum(dim=1)
loss_frame = (((focal_weight_act * self.bce_criterion(cas_sigmoid_fuse, point_anno) * weighting_seq_act)
.sum(dim=2)).sum(dim=1) / (num_actions + 1e-6)).mean()
# bkg frame loss
bkg_seed = bkg_seed.unsqueeze(-1).to(args.device)
point_anno_bkg = torch.zeros_like(point_anno).to(args.device)
point_anno_bkg[:, :, -1] = 1
weighting_seq_bkg = bkg_seed
num_bkg = bkg_seed.sum(dim=1).squeeze(1)
focal_weight_bkg = (1 - cas_sigmoid_fuse) * point_anno_bkg + cas_sigmoid_fuse * (1 - point_anno_bkg)
focal_weight_bkg = focal_weight_bkg ** 2
loss_frame_bkg = (((focal_weight_bkg * self.bce_criterion(cas_sigmoid_fuse, point_anno_bkg) * weighting_seq_bkg)
.sum(dim=2)).sum(dim=1) / (num_bkg + 1e-6)).mean()
return loss_vid, loss_frame, loss_frame_bkg
def feat_loss_func(self, args, embeded_feature, act_seed, bkg_seed, vid_label):
loss_contra = 0
proto_vectors = utils.norm(self.memory.proto_vectors.to(args.device)) #[C,N,F]
for b in range(act_seed.shape[0]):
# >> extract pseudo-action/background features
gt_class = torch.nonzero(vid_label[b]).squeeze(1)
act_feat_lst = []
for c in gt_class:
act_feat_lst.append(utils.extract_region_feat(act_seed[b, :, c], embeded_feature[b, :, :]))
bkg_feat = utils.extract_region_feat(bkg_seed[b].squeeze(-1), embeded_feature[b, :, :])
# >> caculate similarity matrix
if len(bkg_feat) == 0:
continue
bkg_feat = utils.norm(torch.cat(bkg_feat, 0)) #[t_b,F]
b_sim_matrix = torch.matmul(bkg_feat.unsqueeze(0).expand(args.num_class, -1, -1),
torch.transpose(proto_vectors, 1, 2)) / 0.1 #[C,t_b,N]
b_sim_matrix = torch.exp(b_sim_matrix).reshape(b_sim_matrix.shape[0], -1).mean(dim=-1) #[C]
for idx, act_feat in enumerate(act_feat_lst):
if act_feat is not None:
if len(act_feat) == 0:
continue
act_feat = utils.norm(torch.cat(act_feat, 0)) #[t_a,F]
a_sim_matrix = torch.matmul(act_feat.unsqueeze(0).expand(args.num_class, -1, -1),
torch.transpose(proto_vectors, 1, 2)) / 0.1 #[C,t_a,N]
a_sim_matrix = torch.exp(a_sim_matrix).reshape(a_sim_matrix.shape[0], -1).mean(dim=-1) #[C]
# >> caculate contrastive loss
c = gt_class[idx]
loss_contra_act = - torch.log(a_sim_matrix[c] / a_sim_matrix.sum())
loss_contra_bkg = - torch.log(a_sim_matrix[c] /
(a_sim_matrix[c] + b_sim_matrix[c]))
loss_contra += (0.5 * loss_contra_act + 0.5 * loss_contra_bkg)
loss_contra = loss_contra / gt_class.shape[0]
loss_contra = loss_contra / act_seed.shape[0]
return loss_contra