-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
471 lines (379 loc) · 20.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset,DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import time
import math
import argparse
import os
import random
from lib.model import DRNSegment,PSMNet,ResidualDRNet
from utils.dataloader import *
from utils.warp import just_warp
from loss import l1_loss,ssim_loss,EdgeAwareLoss
from eval_utils import end_point_error
import sys
import imageio
sys.path.append('drnseg')
sys.path.append('lib')
parser = argparse.ArgumentParser(description='stereo video main')
parser.add_argument('-superv', action='store_true')
parser.add_argument('-unsuperv', action='store_true')
parser.add_argument('--modeltype', choices=['psmnet_base','residual_drn'], default='psmnet_base')
parser.add_argument('--maxdisp', type=int, default=192,
help='maximum disparity')
parser.add_argument('--train_superv_txt', type=str, default='data/train_supervised.txt',
help='txt file for train S')
parser.add_argument('--val_superv_txt', type=str, default='data/val_supervised.txt',
help='txt file for val S')
parser.add_argument('--train_unsuperv_txt', type=str, default='data/train_unsupervised.txt',
help='txt file for train U')
parser.add_argument('--val_unsuperv_txt', type=str, default='data/train_unsupervised.txt',
help='txt file for val U')
parser.add_argument('--seqlength', type=int, default=3,
help='sequence length')
parser.add_argument('--ckpt', default=None,
help='checkpoint model')
parser.add_argument('--res_ckpt', default=None)
parser.add_argument('--save_to', type=str, default='models')
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--superv_batchsize', type=int, default=16)
parser.add_argument('--unsuperv_batchsize', type=int, default=8)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_decay', type=float, default=1.0)
parser.add_argument('--lr_decay_cycle', type=int, default=5)
parser.add_argument('--eval_every', type=int, default=1)
parser.add_argument('--variance_masking', action='store_true')
parser.add_argument('--entropy_cutoff', type=float, default=1.6)
parser.add_argument('--lambda_edge', type=float, default=0.5)
parser.add_argument('--lambda_ssim', type=float, default=0.5)
parser.add_argument('--lambda_diff', type=float, default=0.01)
parser.add_argument('--freeze', choices=['feature_extractor'], default=None)
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
# cuda
use_cuda = torch.cuda.is_available()
# load unsupervised dataset
if args.unsuperv:
u_trainpath = args.train_unsuperv_txt
u_valpath = args.val_unsuperv_txt
u_trainset = StereoSeqDataset(u_trainpath,args.seqlength,debug=args.debug)
u_valset = StereoSeqDataset(u_valpath,args.seqlength,debug=args.debug)
u_trainloader = DataLoader(u_trainset,batch_size=args.unsuperv_batchsize,shuffle=True,num_workers=8)
u_evaltrainloader = DataLoader(u_trainset,batch_size=1,shuffle=False,num_workers=1)
u_evalvalloader = DataLoader(u_valset,batch_size=1,shuffle=True,num_workers=1)
# load supervised dataset
if args.superv:
s_trainpath = args.train_superv_txt
if args.seqlength == 1:
s_trainset = StereoSupervDataset(s_trainpath)
else:
s_trainset = StereoSeqSupervDataset(s_trainpath,args.seqlength)
s_trainloader = DataLoader(s_trainset,batch_size=args.superv_batchsize,shuffle=True,num_workers=8)
s_valpath = args.val_superv_txt
if args.seqlength == 1:
s_valset = StereoSupervDataset(s_valpath,to_crop=True,debug=args.debug)
else:
s_valset = StereoSeqSupervDataset(s_valpath,args.seqlength)
if args.debug:
s_evalvalloader = DataLoader(s_valset,batch_size=1,shuffle=True,num_workers=1)
else:
s_evalvalloader = DataLoader(s_valset,batch_size=1,shuffle=True,num_workers=1)
if args.ckpt is not None:
if args.modeltype == 'psmnet_base':
ckpt_model = PSMNet(args.maxdisp,k=args.seqlength,freeze=args.freeze)
if args.modeltype == 'psmnet_base':
model = PSMNet(args.maxdisp,k=args.seqlength,freeze=args.freeze)
elif args.modeltype == 'residual_drn':
model = ResidualDRNet(args.maxdisp,args.ckpt,k=args.seqlength,freeze=args.freeze)
if use_cuda:
model = nn.DataParallel(model)
model.cuda()
if args.ckpt is not None and args.modeltype == 'psmnet_base':
ckpt_model = nn.DataParallel(ckpt_model)
ckpt_model.cuda()
if args.res_ckpt is not None:
model.load_state_dict(torch.load(args.res_ckpt)['state_dict'])
start_epoch = torch.load(args.res_ckpt)['epoch']
elif args.ckpt is not None:
if args.modeltype == 'psmnet_base':
model.load_state_dict(torch.load(args.ckpt)['state_dict'])
ckpt_model.load_state_dict(torch.load(args.ckpt)['state_dict'])
if 'epoch' in torch.load(args.ckpt):
start_epoch = torch.load(args.ckpt)['epoch']
else:
start_epoch = 0
else:
start_epoch = 0
else:
start_epoch = 0
optimizer = optim.Adam(model.parameters(), lr=args.lr)
edgeloss = EdgeAwareLoss()
if use_cuda:
edgeloss = edgeloss.cuda()
def train(s_dataloader=None, u_dataloader=None, epoch=0):
model.train()
total_u_loss = 0.0
total_u_n = 0
total_s_loss = 0.0
total_s_n = 0
total_epe_loss = 0.0
total_tpe_loss = 0.0
iter_count = 0
if not s_dataloader is None:
len_s_loader = len(s_dataloader)
s_iter = iter(s_dataloader)
else:
len_s_loader = 0
if not u_dataloader is None:
len_u_loader = len(u_dataloader)
u_iter = iter(u_dataloader)
else:
len_u_loader = 0
if not s_dataloader is None and not u_dataloader is None:
term_iter = min(len_s_loader,len_u_loader)
elif not s_dataloader is None:
term_iter = len_s_loader
else:
term_iter = len_u_loader
print(len_s_loader,len_u_loader)
while True:
if iter_count > 250:
break
s_loss,u_loss = 0.0,0.0
if iter_count < len_s_loader and not s_dataloader is None:
optimizer.zero_grad()
img_L,img_R,y = next(s_iter)
if use_cuda:
img_L = img_L.cuda()
img_R = img_R.cuda()
y = y.cuda()
y = y.squeeze(1)
mask = (y < args.maxdisp)*(y > 0.0)
mask.detach_()
if args.modeltype == 'psmnet_base':
output1, output2, output3 = model(img_L,img_R) # L-R input
output1 = torch.squeeze(output1,1)
output2 = torch.squeeze(output2,1)
output3 = torch.squeeze(output3,1)
s_loss = 0.5*F.smooth_l1_loss(output1[mask], y[mask], size_average=True) + 0.7*F.smooth_l1_loss(output2[mask], y[mask], size_average=True) + F.smooth_l1_loss(output3[mask], y[mask], size_average=True)
epe_loss = end_point_error(output3,y,mask)
tpe_loss = torch.mean((torch.abs(output3[mask]-y[mask])>3.0).float())*output3.size(0)
s_loss.backward()
total_s_n += output1.size(0)
total_s_loss += s_loss
total_epe_loss += epe_loss
total_tpe_loss += tpe_loss
# unsupervised
if iter_count < len_u_loader and not u_dataloader is None:
optimizer.zero_grad()
img_seq = next(u_iter)
img_seq = Variable(img_seq,requires_grad=True)
if use_cuda:
img_seq = img_seq.cuda()
if args.modeltype == 'psmnet_base':
if args.variance_masking:
with torch.no_grad():
ent1,ent2,ent3,_,_,_ = ckpt_model(img_seq[:,0],img_seq[:,1],True)
output1, output2, output3 = model(img_seq[:,0],img_seq[:,1])
else:
output1, output2, output3 = model(img_seq[:,0],img_seq[:,1]) # L-R input
# get softmax for predictions
if args.variance_masking:
ent1,ent2,ent3 = ent1.detach().cpu(),ent2.detach().cpu(),ent3.detach().cpu()
ent1,ent2,ent3 = ent1*torch.log(ent1),ent2*torch.log(ent2),ent3*torch.log(ent3)
ent1 = torch.where(ent1==ent1,ent1,torch.zeros(ent1.shape))
ent2 = torch.where(ent2==ent2,ent2,torch.zeros(ent2.shape))
ent3 = torch.where(ent3==ent3,ent3,torch.zeros(ent3.shape))
ent1,ent2,ent3 = torch.sum(-ent1,dim=1),torch.sum(-ent2,dim=1),torch.sum(-ent3,dim=1)
ent1_mask,ent2_mask,ent3_mask = ent1<args.entropy_cutoff,ent2<args.entropy_cutoff,ent3<args.entropy_cutoff
ent1_mask,ent2_mask,ent3_mask = ent1_mask.unsqueeze(1).cuda(),ent2_mask.unsqueeze(1).cuda(),ent3_mask.unsqueeze(1).cuda()
imgL,imgR = Variable(img_seq[:,0],requires_grad=True),Variable(img_seq[:,1],requires_grad=True)
#imgL,imgR = torch.mean(imgL,dim=1).unsqueeze(1),torch.mean(imgR,dim=1).unsqueeze(1)
output1,output2,output3 = output1.unsqueeze(1),output2.unsqueeze(1),output3.unsqueeze(1)
warp1 = just_warp(imgR,output1)
warp2 = just_warp(imgR,output2)
warp3 = just_warp(imgR,output3)
# # downsampling for multiscale
# s1_imgL = F.interpolate(imgL,scale_factor=0.25,mode='bilinear')
# s2_imgL = F.interpolate(s1_imgL,scale_factor=0.5,mode='bilinear')
# s3_imgL = F.interpolate(s2_imgL,scale_factor=0.5,mode='bilinear')
# s1_imgR = F.interpolate(imgR,scale_factor=0.25,mode='bilinear')
# s2_imgR = F.interpolate(s1_imgR,scale_factor=0.5,mode='bilinear')
# s3_imgR = F.interpolate(s2_imgR,scale_factor=0.5,mode='bilinear')
# s1_o1,s1_o2,s1_o3 = F.interpolate(output1,scale_factor=0.25,mode='bilinear'),F.interpolate(output2,scale_factor=0.25,mode='bilinear'),F.interpolate(output3,scale_factor=0.25,mode='bilinear')
# s2_o1,s2_o2,s2_o3 = F.interpolate(s1_o1,scale_factor=0.5,mode='bilinear'),F.interpolate(s1_o2,scale_factor=0.5,mode='bilinear'),F.interpolate(s1_o3,scale_factor=0.5,mode='bilinear')
# s3_o1,s3_o2,s3_o3 = F.interpolate(s2_o1,scale_factor=0.5,mode='bilinear'),F.interpolate(s2_o2,scale_factor=0.5,mode='bilinear'),F.interpolate(s2_o3,scale_factor=0.5,mode='bilinear')
# s1_warp1,s1_warp2,s1_warp3 = just_warp(s1_imgR,s1_o1/4),just_warp(s1_imgR,s1_o2/4),just_warp(s1_imgR,s1_o3/4)
# s2_warp1,s2_warp2,s2_warp3 = just_warp(s2_imgR,s2_o1/8),just_warp(s2_imgR,s2_o2/8),just_warp(s2_imgR,s2_o3/8)
# s3_warp1,s3_warp2,s3_warp3 = just_warp(s3_imgR,s3_o1/16),just_warp(s3_imgR,s3_o2/16),just_warp(s3_imgR,s3_o3/16)
# reverse warp
# reverse1 = just_warp(warp1,-output1)
# reverse2 = just_warp(warp2,-output2)
# reverse3 = just_warp(warp3,-output3)
# occlude1 = (reverse1+imgR).pow(2) >= 0.01*(reverse1.pow(2)+imgR.pow(2))+0.5
# occlude2 = (reverse2+imgR).pow(2) >= 0.01*(reverse2.pow(2)+imgR.pow(2))+0.5
# occlude3 = (reverse3+imgR).pow(2) >= 0.01*(reverse3.pow(2)+imgR.pow(2))+0.5
#output3 = output3.unsqueeze(1)
loss1_mask = torch.ones(imgR.shape).cuda()
loss2_mask = torch.ones(imgR.shape).cuda()
loss3_mask = torch.ones(imgR.shape).cuda()
# # mask for downsampled images
# s1_mask = F.interpolate(loss1_mask,scale_factor=0.25)
# s2_mask = F.interpolate(s1_mask,scale_factor=0.5)
# s3_mask = F.interpolate(s2_mask,scale_factor=0.5)
# s1_mask,s2_mask,s3_mask = s1_mask.byte(),s2_mask.byte(),s3_mask.byte()
# get mask based on warping
if args.variance_masking:
loss1_mask = just_warp(torch.ones(imgR.shape).cuda(),output1)
loss2_mask = just_warp(torch.ones(imgR.shape).cuda(),output2)
loss3_mask = just_warp(torch.ones(imgR.shape).cuda(),output3)
# loss1_mask *= occlude1.float()
# loss2_mask *= occlude2.float()
# loss3_mask *= occlude3.float()
if args.variance_masking:
loss1_mask *= ent1_mask.float()
loss2_mask *= ent2_mask.float()
loss3_mask *= ent3_mask.float()
loss1_mask = torch.ceil(loss1_mask).byte()
loss2_mask = torch.ceil(loss2_mask).byte()
loss3_mask = torch.ceil(loss3_mask).byte()
loss1 = l1_loss(imgL,warp1,loss1_mask) + args.lambda_edge*edgeloss(imgL,output1,loss1_mask)+args.lambda_ssim*ssim_loss(imgL,warp1,loss1_mask)
loss2 = l1_loss(imgL,warp2,loss2_mask) + args.lambda_edge*edgeloss(imgL,output2,loss2_mask)+args.lambda_ssim*ssim_loss(imgL,warp2,loss2_mask)
loss3 = l1_loss(imgL,warp3,loss3_mask) + args.lambda_edge*edgeloss(imgL,output3,loss3_mask)+args.lambda_ssim*ssim_loss(imgL,warp3,loss3_mask)
# # downsampled loss
# loss1 += l1_loss(s1_imgL,s1_warp1,s1_mask)+0.5*edgeloss(s1_imgL,s1_o1,s1_mask)
# loss1 += l1_loss(s1_imgL,s1_warp2,s1_mask)+0.5*edgeloss(s1_imgL,s1_o2,s1_mask)
# loss1 += l1_loss(s1_imgL,s1_warp3,s1_mask)+0.5*edgeloss(s1_imgL,s1_o3,s1_mask)
# loss2 += l1_loss(s2_imgL,s2_warp1,s2_mask)+0.5*edgeloss(s2_imgL,s2_o1,s2_mask)
# loss2 += l1_loss(s2_imgL,s2_warp2,s2_mask)+0.5*edgeloss(s2_imgL,s2_o2,s2_mask)
# loss2 += l1_loss(s2_imgL,s2_warp3,s2_mask)+0.5*edgeloss(s2_imgL,s2_o3,s2_mask)
# loss3 += l1_loss(s3_imgL,s3_warp1,s3_mask)+0.5*edgeloss(s3_imgL,s3_o1,s3_mask)
# loss3 += l1_loss(s3_imgL,s3_warp2,s3_mask)+0.5*edgeloss(s3_imgL,s3_o2,s3_mask)
# loss3 += l1_loss(s3_imgL,s3_warp3,s3_mask)+0.5*edgeloss(s3_imgL,s3_o3,s3_mask)
diff_loss = 0.5*(torch.mean((output1[:,:,1:]-output1[:,:,:-1]).pow(2))+torch.mean((output1[:,:,:,1:]-output1[:,:,:,:-1]).pow(2)))
diff_loss += 0.7*(torch.mean((output2[:,:,1:]-output2[:,:,:-1]).pow(2))+torch.mean((output2[:,:,:,1:]-output2[:,:,:,:-1]).pow(2)))
diff_loss += torch.mean((output3[:,:,1:]-output3[:,:,:-1]).pow(2))+torch.mean((output3[:,:,:,1:]-output3[:,:,:,:-1]).pow(2))
# print(l1_loss(imgL,warp2,loss3_mask))
# print(edgeloss(imgL,output3,loss3_mask))
# print(ssim_loss(imgL,warp3,loss3_mask))
u_loss = (0.5*loss1 + 0.7*loss2 + loss3) + args.lambda_diff*diff_loss
u_loss *= 1.0
elif args.modeltype == 'residual_drn':
if args.variance_masking:
with torch.no_grad():
ent,output = model(img_seq[:,0],img_seq[:,1],True)
else:
output = model(img_seq[:,0],img_seq[:,1]) # L-R input
if args.variance_masking:
ent = ent.detach().cpu()
ent = ent*torch.log(ent)
ent = torch.where(ent==ent,ent,torch.zeros(ent.shape))
ent = torch.sum(-ent,dim=1)
ent_mask = ent<args.entropy_cutoff
ent_mask = ent_mask.unsqueeze(1).cuda()
imgL,imgR = Variable(img_seq[:,0]),Variable(img_seq[:,1])
ent,output = Variable(ent,requires_grad=True),Variable(output,requires_grad=True)
warp = just_warp(imgR,output)
reverse = just_warp(warp,-output)
occlude = (reverse+imgR).pow(2) >= 0.01*(reverse.pow(2)+imgR.pow(2))+0.5
loss_mask = just_warp(torch.ones(imgR.shape).cuda(),output)
loss_mask *= occlude.float()
if args.variance_masking:
loss_mask *= ent_mask.float()
loss_mask = loss_mask.byte()
loss = l1_loss(imgL,warp,loss_mask)+0.5*edgeloss(imgL,output,loss_mask)+0.5*ssim_loss(imgL,warp,loss_mask)
diff_loss = torch.mean((output[:,:,1:]-output[:,:,:-1]).pow(2))+torch.mean((output[:,:,:,1:]-output[:,:,:,:-1]).pow(2))
u_loss = loss+0.0*diff_loss
u_loss *= 1.0
u_loss.backward()
total_u_loss += u_loss
total_u_n += img_seq.size(0)
if args.debug:
imageio.imsave("debug/img_L.png",imgL[0].permute(1,2,0).detach().cpu().numpy())
imageio.imsave("debug/img_R.png",imgR[0].permute(1,2,0).detach().cpu().numpy())
imageio.imsave("debug/disp_"+str(epoch)+".png",output3[0][0].detach().cpu().numpy())
imageio.imsave("debug/warp_"+str(epoch)+".png",warp3[0].permute(1,2,0).detach().cpu().numpy())
optimizer.step()
iter_count += 1
if iter_count >= term_iter: # out of data
break
if iter_count % 25 == 1:
if not s_dataloader is None:
print("training loss at iter " + str(iter_count) + " : " + str((total_s_loss/total_s_n).item()))
if not u_dataloader is None:
print("training loss at iter " + str(iter_count) + " : " + str((total_u_loss/total_u_n).item()))
if not s_dataloader is None and not u_dataloader is None:
return (total_s_loss/total_s_n).item(),(total_epe_loss/total_s_n).item(),(total_u_loss/total_u_n).item()
elif s_dataloader is None:
return (total_u_loss/total_u_n).item()
else:
return (total_s_loss/total_s_n).item(),(total_epe_loss/total_s_n).item()
def adjust_learning_rate(epoch):
lr = args.lr * (args.lr_decay ** int(epoch/args.lr_decay_cycle))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def eval_supervised(dataloader): # only takes in supervised loader
model.eval()
total_loss = 0.0
total_n = 0
iter_count = 0
len_iter = len(dataloader)
d_iter = iter(dataloader)
while iter_count < len_iter:
if iter_count > 100:
break
img_L,img_R,y = next(d_iter)
if use_cuda:
img_L = img_L.cuda()
img_R = img_R.cuda()
y = y.cuda()
y = y.squeeze(1)
mask = (y < args.maxdisp)*(y > 0.0)
mask.detach_()
if args.modeltype == 'psmnet_base' or args.modeltype == 'residual_drn':
with torch.no_grad():
output3 = model(img_L,img_R) # L-R input
output3 = torch.squeeze(output3,1)
if args.debug:
s_loss = torch.mean(torch.abs(output3[mask]-y[mask]))
else:
s_loss = torch.mean((torch.abs(output3[mask]-y[mask])>3.0).float())*output3.size(0)
total_loss += s_loss
total_n += output3.size(0)
iter_count += 1
if iter_count % 100 == 0:
print("validation loss at iter " + str(iter_count) + " : " + str((total_loss/total_n).item()))
return (total_loss/total_n).item()
def main():
for epoch in range(start_epoch,args.epochs):
print("starting epoch : " + str(epoch))
if epoch % args.lr_decay_cycle and epoch > 0:
adjust_learning_rate(epoch)
if args.superv and args.unsuperv:
s_trainloss,epe_trainloss,u_trainloss = train(s_trainloader,u_trainloader,epoch)
print("training supervised loss : " + str(s_trainloss) + ", epoch : " + str(epoch))
print("training epe loss : " + str(epe_trainloss) + ", epoch : " + str(epoch))
print("training unsupervised loss : " + str(u_trainloss) + ", epoch : " + str(epoch))
elif args.superv:
#print("skip training")
s_trainloss,epe_trainloss = train(s_trainloader,None,epoch)
print("training supervised loss : " + str(s_trainloss) + ", epoch : " + str(epoch))
print("training epe loss : " + str(epe_trainloss) + ", epoch : " + str(epoch))
else:
u_trainloss = train(None,u_trainloader,epoch)
print("training unsupervised loss : " + str(u_trainloss) + ", epoch : " + str(epoch))
if epoch % args.eval_every == 0:
valloss = eval_supervised(s_evalvalloader)
print("validation 3 pixel error : " + str(valloss) + ", epoch : " + str(epoch))
savefilename = args.save_to+'/checkpoint_'+str(epoch)+'.tar'
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'val_loss': valloss,
}, savefilename)
if __name__ == '__main__':
main()