From a576da11f268593655c24237a5dfcf22e0173970 Mon Sep 17 00:00:00 2001 From: Kazuhiko Sakaguchi Date: Sat, 17 Feb 2024 17:10:58 +0100 Subject: [PATCH] Add count_sort --- theories/stablesort.v | 170 ++++++++++++++++++++++-------------------- 1 file changed, 89 insertions(+), 81 deletions(-) diff --git a/theories/stablesort.v b/theories/stablesort.v index e56d0ee..32c8ef8 100644 --- a/theories/stablesort.v +++ b/theories/stablesort.v @@ -20,6 +20,14 @@ Local Lemma allrel_rev2 {T S} (r : T -> S -> bool) (s1 : seq T) (s2 : seq S) : allrel r (rev s1) (rev s2) = allrel r s1 s2. Proof. by rewrite [LHS]all_rev [LHS]allrelC [RHS]allrelC [LHS]all_rev. Qed. +Local Lemma count_merge (T : Type) (leT : rel T) (p : pred T) (s1 s2 : seq T) : + count p (merge leT s1 s2) = count p (s1 ++ s2). +Proof. +rewrite count_cat; elim: s1 s2 => // x s1 IH1. +elim=> //= [|y s2 IH2]; first by rewrite addn0. +by case: (leT x); rewrite /= ?IH1 ?IH2 ?[p y + _]addnCA addnA. +Qed. + (******************************************************************************) (* The abstract interface for stable (merge)sort algorithms *) (******************************************************************************) @@ -993,7 +1001,7 @@ Proof. by case: sort. Qed. Section SortSeq. -Context (T : Type) (P : {pred T}) (leT : rel T). +Context (T : Type) (leT leT' : rel T). Let geT x y := leT y x. Local Lemma asort_mergeE : @@ -1021,35 +1029,76 @@ apply: (@param_asort _ _ eq _ _ R) => //. by elim: s; constructor. Qed. -Lemma all_sort (s : seq T) : all P (sort _ leT s) = all P s. +Lemma pairwise_sort (s : seq T) : pairwise leT s -> sort _ leT s = s. Proof. -by elim/sort_ind: (sort _ leT s) => // xs xs' IHxs ys ys' IHys; - rewrite !(all_rev, all_merge) all_cat IHxs IHys // andbC. +elim/sort_ind: (sort _ leT s) => // xs xs' IHxs ys ys' IHys. + by rewrite pairwise_cat => /and3P[/allrel_merge <- /IHxs -> /IHys ->]. +rewrite pairwise_cat allrelC -allrel_rev2 => /and3P[hlr /IHxs -> /IHys ->]. +by rewrite allrel_merge // rev_cat !revK. Qed. -Lemma size_sort (s : seq T) : size (sort _ leT s) = size s. +Lemma sorted_sort : transitive leT -> + forall s : seq T, sorted leT s -> sort _ leT s = s. +Proof. by move=> leT_tr s; rewrite sorted_pairwise //; apply/pairwise_sort. Qed. + +Lemma sort_pairwise_stable : total leT -> + forall s : seq T, pairwise leT' s -> sorted (lexord leT leT') (sort _ leT s). Proof. -by elim/sort_ind: (sort _ leT s) => // xs xs' IHxs ys ys' IHys; - rewrite ?size_rev size_merge !size_cat ?size_rev IHxs IHys // addnC. +move=> leT_total s. +suff: (forall P, all P s -> all P (sort T leT s)) /\ + (pairwise leT' s -> sorted (lexord leT leT') (sort T leT s)). + by case. +elim/sort_ind: (sort _ leT s) => // xs xs' [IHxs IHxs'] ys ys' [IHys IHys']; + rewrite pairwise_cat; split => [P|/and3P[hlr /IHxs' ? /IHys' ?]]. +- by rewrite all_cat all_merge => /andP[/IHxs -> /IHys ->]. +- apply/merge_stable_sorted => //=. + by apply/IHxs; apply/sub_all: hlr => ?; apply/IHys. +- by rewrite all_cat all_rev all_merge !all_rev => /andP[/IHxs -> /IHys ->]. +- rewrite rev_sorted; apply/merge_stable_sorted; rewrite ?rev_sorted //. + rewrite allrel_rev2 allrelC. + by apply/IHxs; apply/sub_all: hlr => ?; apply/IHys. Qed. -Lemma sort_nil : sort _ leT [::] = [::]. -Proof. by case: (sort _) (size_sort [::]). Qed. +Lemma sort_stable : total leT -> transitive leT' -> + forall s : seq T, sorted leT' s -> sorted (lexord leT leT') (sort _ leT s). +Proof. +by move=> ? ? s; rewrite sorted_pairwise//; apply: sort_pairwise_stable. +Qed. -Lemma pairwise_sort (s : seq T) : pairwise leT s -> sort _ leT s = s. +End SortSeq. + +Lemma count_sort (T : Type) (p : pred T) (leT : rel T) (s : seq T) : + count p (sort _ leT s) = count p s. Proof. -elim/sort_ind: (sort _ leT s) => // xs xs' IHxs ys ys' IHys. - rewrite pairwise_cat => /and3P[hlr /IHxs -> /IHys ->]. - by rewrite !allrel_merge. -rewrite pairwise_cat => /and3P[hlr /IHxs -> /IHys ->]. -by rewrite allrel_merge 1?allrel_rev2 1?allrelC // rev_cat !revK. +by elim/sort_ind: (sort _ leT s) => // xs xs' IHxs ys ys' IHys; + rewrite ?count_rev count_merge !count_cat ?count_rev IHxs IHys // addnC. Qed. -Lemma sorted_sort : transitive leT -> - forall s : seq T, sorted leT s -> sort _ leT s = s. -Proof. by move=> leT_tr s; rewrite sorted_pairwise //; apply/pairwise_sort. Qed. +Lemma size_sort (T : Type) (leT : rel T) (s : seq T) : + size (sort _ leT s) = size s. +Proof. exact: (count_sort predT). Qed. -End SortSeq. +Lemma sort_nil (T : Type) (leT : rel T) : sort _ leT [::] = [::]. +Proof. by case: (sort _) (size_sort leT [::]). Qed. + +Lemma all_sort (T : Type) (p : pred T) (leT : rel T) (s : seq T) : + all p (sort _ leT s) = all p s. +Proof. by rewrite !all_count count_sort size_sort. Qed. + +Section EqSortSeq. + +Context (T : eqType) (leT : rel T) (s : seq T). + +Lemma perm_sort : perm_eql (sort _ leT s) s. +Proof. by apply/permPl/permP => ?; rewrite count_sort. Qed. + +Lemma mem_sort : sort _ leT s =i s. +Proof. exact/perm_mem/permPl/perm_sort. Qed. + +Lemma sort_uniq : uniq (sort _ leT s) = uniq s. +Proof. exact/perm_uniq/permPl/perm_sort. Qed. + +End EqSortSeq. Local Lemma param_sort : StableSort.sort_ty_R sort sort. Proof. @@ -1080,43 +1129,6 @@ move=> /in3_sig ? _ /all_sigP[s ->]. by rewrite sort_map sorted_map => /sorted_sort->. Qed. -Section EqSortSeq. - -Context (T : eqType) (leT : rel T). - -Lemma perm_sort (s : seq T) : perm_eql (sort _ leT s) s. -Proof. -by apply/permPl; elim/sort_ind: (sort _ leT s) => // xs xs' IHxs ys ys' IHys; - rewrite 1?perm_rev perm_merge -1?rev_cat 1?perm_rev perm_cat. -Qed. - -Lemma mem_sort (s : seq T) : sort _ leT s =i s. -Proof. exact/perm_mem/permPl/perm_sort. Qed. - -Lemma sort_uniq (s : seq T) : uniq (sort _ leT s) = uniq s. -Proof. exact/perm_uniq/permPl/perm_sort. Qed. - -End EqSortSeq. - -Lemma sort_pairwise_stable (T : Type) (leT leT' : rel T) : - total leT -> forall s : seq T, pairwise leT' s -> - sorted (lexord leT leT') (sort _ leT s). -Proof. -move=> leT_total s. -suff: (forall P, all P s -> all P (sort T leT s)) /\ - (pairwise leT' s -> sorted (lexord leT leT') (sort T leT s)). - by case. -elim/sort_ind: (sort _ leT s) => // xs xs' [IHxs IHxs'] ys ys' [IHys IHys']; - rewrite pairwise_cat; split => [P|/and3P[hlr /IHxs' ? /IHys' ?]]. -- by rewrite all_cat all_merge => /andP[/IHxs -> /IHys ->]. -- apply/merge_stable_sorted => //=. - by apply/IHxs; apply/sub_all: hlr => ?; apply/IHys. -- by rewrite all_cat all_rev all_merge !all_rev => /andP[/IHxs -> /IHys ->]. -- rewrite rev_sorted; apply/merge_stable_sorted; rewrite ?rev_sorted //. - rewrite allrel_rev2 allrelC. - by apply/IHxs; apply/sub_all: hlr => ?; apply/IHys. -Qed. - Lemma sort_pairwise_stable_in (T : Type) (P : {pred T}) (leT leT' : rel T) : {in P &, total leT} -> forall s : seq T, all P s -> pairwise leT' s -> sorted (lexord leT leT') (sort _ leT s). @@ -1125,13 +1137,6 @@ move=> /in2_sig leT_total _ /all_sigP[s ->]. by rewrite sort_map pairwise_map sorted_map; apply: sort_pairwise_stable. Qed. -Lemma sort_stable (T : Type) (leT leT' : rel T) : - total leT -> transitive leT' -> forall s : seq T, sorted leT' s -> - sorted (lexord leT leT') (sort _ leT s). -Proof. -by move=> ? ? s; rewrite sorted_pairwise//; apply: sort_pairwise_stable. -Qed. - Lemma sort_stable_in (T : Type) (P : {pred T}) (leT leT' : rel T) : {in P &, total leT} -> {in P & &, transitive leT'} -> forall s : seq T, all P s -> sorted leT' s -> @@ -1176,8 +1181,8 @@ pose lt' := lexord (relpre (nth x s) leT') ltn. pose lt := lexord (relpre (nth x s) leT) lt'. have lt'_tr: transitive lt' by apply/lexord_trans/ltn_trans/relpre_trans. have lt_tr : transitive lt by apply/lexord_trans/lt'_tr/relpre_trans. -rewrite -(mkseq_nth x s) !(filter_map, sort_map); congr map. -apply/(@irr_sorted_eq _ lt); rewrite /lt /lexord //=. +rewrite -(mkseq_nth x s) !sort_map; congr map. +apply/(@irr_sorted_eq _ lt) => //; rewrite /lt /lexord //=. - by move=> ?; rewrite /= ltnn !(implybF, andbN). - exact/sort_stable/sort_stable/iota_ltn_sorted/ltn_trans. - under eq_sorted do rewrite lexordA. @@ -1238,7 +1243,7 @@ Proof. move=> leT_total leT_tr s; case Ds: s => [|x s1]; first by rewrite !sort_nil. pose lt := lexord (relpre (nth x s) leT) ltn. have lt_tr: transitive lt by apply/lexord_trans/ltn_trans/relpre_trans. -rewrite -{s1}Ds -(mkseq_nth x s) !(filter_map, sort_map); congr map. +rewrite -{s1}Ds -(mkseq_nth x s) !sort_map; congr map. apply/(@irr_sorted_eq _ lt); rewrite /lt /lexord //=. - by move=> ?; rewrite /= ltnn implybF andbN. - exact/sort_stable/iota_ltn_sorted/ltn_trans. @@ -1333,7 +1338,7 @@ Context (leT_total : total leT) (leT_tr : transitive leT). Lemma subseq_sort : {homo sort _ leT : t s / subseq t s}. Proof. move=> _ s /subseqP [m _ ->]. -have [m' <-] := mask_sort leT_total leT_tr s m; exact: mask_subseq. +by have [m' <-] := mask_sort leT_total leT_tr s m; exact: mask_subseq. Qed. Lemma sorted_subseq_sort (t s : seq T) : @@ -1360,7 +1365,8 @@ Lemma subseq_sort_in (t s : seq T) : subseq t s -> subseq (sort _ leT t) (sort _ leT s). Proof. move=> leT_total leT_tr /subseqP [m _ ->]. -have [m' <-] := mask_sort_in leT_total leT_tr m (allss _); exact: mask_subseq. +have [m' <-] := mask_sort_in leT_total leT_tr m (allss _). +exact: mask_subseq. Qed. Lemma sorted_subseq_sort_in (t s : seq T) : @@ -1387,21 +1393,23 @@ End StableSortTheory_Part2. End StableSortTheory. -Arguments all_sort sort {T} P leT s. -Arguments size_sort sort {T} leT s. -Arguments sort_nil sort {T} leT. -Arguments pairwise_sort sort {T leT s} _. -Arguments sorted_sort sort {T leT} leT_tr {s} _. +Arguments sort_ind sort {T leT R} _ _ _ _ s. Arguments map_sort sort {T T' f leT' leT} _ _. Arguments sort_map sort {T T' f leT} s. +Arguments pairwise_sort sort {T leT s} _. +Arguments sorted_sort sort {T leT} leT_tr {s} _. Arguments sorted_sort_in sort {T P leT} leT_tr {s} _ _. -Arguments perm_sort sort {T} leT s _. -Arguments mem_sort sort {T} leT s _. -Arguments sort_uniq sort {T} leT s. Arguments sort_pairwise_stable sort {T leT leT'} leT_total {s} _. Arguments sort_pairwise_stable_in sort {T P leT leT'} leT_total {s} _ _. Arguments sort_stable sort {T leT leT'} leT_total leT'_tr {s} _. Arguments sort_stable_in sort {T P leT leT'} leT_total leT'_tr {s} _ _. +Arguments count_sort sort {T} p leT s. +Arguments size_sort sort {T} leT s. +Arguments sort_nil sort {T} leT. +Arguments all_sort sort {T} p leT s. +Arguments perm_sort sort {T} leT s _. +Arguments mem_sort sort {T} leT s _. +Arguments sort_uniq sort {T} leT s. Arguments filter_sort sort {T leT} leT_total leT_tr p s. Arguments filter_sort_in sort {T P leT} leT_total leT_tr p {s} _. Arguments sort_sort sort {T leT leT'} @@ -1415,16 +1423,16 @@ Arguments perm_sort_inP sort {T leT s1 s2} leT_total leT_tr leT_asym. Arguments eq_sort sort1 sort2 {T leT} leT_total leT_tr _. Arguments eq_in_sort sort1 sort2 {T P leT} leT_total leT_tr {s} _. Arguments eq_sort_insert sort {T leT} leT_total leT_tr _. -Arguments sort_cat sort {T leT} leT_total leT_tr s1 s2. -Arguments mask_sort sort {T leT} leT_total leT_tr s m. -Arguments sorted_mask_sort sort {T leT} leT_total leT_tr {s m} _. Arguments eq_in_sort_insert sort {T P leT} leT_total leT_tr {s} _. +Arguments sort_cat sort {T leT} leT_total leT_tr s1 s2. Arguments sort_cat_in sort {T P leT} leT_total leT_tr {s1 s2} _ _. +Arguments mask_sort sort {T leT} leT_total leT_tr s m. Arguments mask_sort_in sort {T P leT} leT_total leT_tr {s} m _. +Arguments sorted_mask_sort sort {T leT} leT_total leT_tr {s m} _. Arguments sorted_mask_sort_in sort {T P leT} leT_total leT_tr {s m} _ _. Arguments subseq_sort sort {T leT} leT_total leT_tr {x y} _. -Arguments sorted_subseq_sort sort {T leT} leT_total leT_tr {t s} _ _. -Arguments mem2_sort sort {T leT} leT_total leT_tr {s x y} _ _. Arguments subseq_sort_in sort {T leT t s} leT_total leT_tr _. +Arguments sorted_subseq_sort sort {T leT} leT_total leT_tr {t s} _ _. Arguments sorted_subseq_sort_in sort {T leT t s} leT_total leT_tr _ _. +Arguments mem2_sort sort {T leT} leT_total leT_tr {s x y} _ _. Arguments mem2_sort_in sort {T leT s} leT_total leT_tr x y _ _.