-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANN_helper.py
185 lines (160 loc) · 6.72 KB
/
ANN_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import absolute_import, division, print_function, unicode_literals
# Pytorch and Pytorch Geometric
import torch as tch
import torch.nn as nn
import torch.optim as optim
from torch_geometric.nn import GCNConv, summary as gsummary, global_mean_pool
from torch_geometric.data import Data, DataLoader
from rdkit import Chem
from rdkit.Chem import AllChem
# Helper libraries
from torchsummary import summary as asummary
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from tqdm.notebook import tqdm
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import os
device = tch.device("cuda" if tch.cuda.is_available() else "cpu")
def annFit(ann_model, X_train_tensor, y_train_tensor, X_test_tensor, y_test_tensor, num_epochs, optimizer, criterion):
train_losses = []
val_losses = []
ann_model.to(device)
pbar = tqdm(range(num_epochs), desc="Epochs")
for epoch in range(num_epochs):
ann_model.train()
optimizer.zero_grad()
outputs = ann_model(X_train_tensor.to(device))
loss = criterion(outputs, y_train_tensor)
loss.backward()
optimizer.step()
train_losses.append(loss.item())
ann_model.eval()
with tch.no_grad():
val_outputs = ann_model(X_test_tensor)
val_loss = criterion(val_outputs, y_test_tensor)
val_losses.append(val_loss.item())
# print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Val Loss: {val_loss.item():.4f}')
pbar.update(1)
pbar.set_postfix({"Training Loss": train_losses[-1], "Validation Loss": val_losses[-1]})
return ann_model, train_losses, val_losses
def fitGNN(gnn_model, t_loader, v_loader, num_epochs, batch_size, optimizer, criterion):
train_losses = []
val_losses = []
pbar = tqdm(range(num_epochs), desc="Epochs")
pbar_t = tqdm(total=len(t_loader), desc="Training Batch:", leave=False)
pbar_v = tqdm(total=len(v_loader), desc="validation Batch:", leave=False)
for epoch in range(num_epochs):
# Training Phase
gnn_model.train()
train_loss_items = []
pbar_t.reset()
pbar_v.reset()
for batch in t_loader:
optimizer.zero_grad()
# Use Batch Data object in forward pass
outputs = gnn_model(batch.x, batch.edge_index, batch.batch)
loss = criterion(outputs, batch.y)
loss.backward()
optimizer.step()
train_loss_items.append(loss.item())
pbar_t.update()
avg_train_loss = sum(train_loss_items) / len(train_loss_items)
train_losses.append(avg_train_loss)
# Validation Phase (assuming you have a separate validation loader)
gnn_model.eval()
val_loss_items = []
with tch.no_grad():
for val_batch in v_loader:
val_outputs = gnn_model(val_batch.x, val_batch.edge_index, val_batch.batch)
val_loss = criterion(val_outputs, val_batch.y)
val_loss_items.append(val_loss.item())
pbar_v.update()
avg_val_loss = sum(val_loss_items) / len(val_loss_items)
val_losses.append(avg_val_loss)
# print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_losses[-1]:.4f}, Val Loss: {avg_val_loss:.4f}')
pbar.update(1)
pbar.set_postfix({"Training Loss": avg_train_loss, "Validation Loss": avg_val_loss})
return gnn_model, train_losses, val_losses
def plot_history(train_losses, val_losses, model_name):
fig = plt.figure(figsize=(15, 5), facecolor='w')
ax = fig.add_subplot(121)
ax.plot(train_losses)
ax.plot(val_losses)
ax.set(title=model_name + ': Model loss', ylabel='Loss', xlabel='Epoch')
ax.legend(['Train', 'Test'], loc='upper right')
ax = fig.add_subplot(122)
ax.plot(np.log(train_losses))
ax.plot(np.log(val_losses))
ax.set(title=model_name + ': Log model loss', ylabel='Log loss', xlabel='Epoch')
ax.legend(['Train', 'Test'], loc='upper right')
plt.show()
plt.close()
def smiles_to_fingerprint(smiles):
mol = Chem.MolFromSmiles(smiles)
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=128)
return list(fp.ToBitString())
def smiles_to_mol(smiles):
mol = Chem.MolFromSmiles(smiles)
return mol
def read_smiles_data(path_data):
df = pd.read_csv(path_data, sep=',')
df['fingerprint'] = df['SMILES'].apply(smiles_to_fingerprint)
df['fingerprint'] = df['fingerprint'].apply(lambda x: [int(bit) for bit in x])
df['mol'] = df['SMILES'].apply(smiles_to_mol)
return df
def make_pyg(row):
# Create node features
mol = row['mol']
atom_features = [atom.GetAtomicNum() for atom in mol.GetAtoms()]
x1 = tch.tensor(atom_features, dtype=tch.float).view(-1, 1)
x2 = tch.tensor(row['fingerprint'], dtype=tch.float)
y = tch.tensor(row['measured.log.solubility.mol.L.'], dtype=tch.float).view(-1, 1)
# Duplicate fingerprint for each atom and concatenate
x2_repeated = x2.repeat(x1.shape[0], 1)
x = tch.cat([x1, x2_repeated], dim=1)
# Create edge features (connectivity)
edge_indices = []
edge_features = []
for bond in mol.GetBonds():
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
edge_indices.append((i, j))
edge_features.append([bond.GetBondTypeAsDouble()]) # Bond type (as double)
edge_index = tch.tensor(edge_indices, dtype=tch.long).t().contiguous()
edge_attr = tch.tensor(edge_features, dtype=tch.float).view(-1, 1)
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
class ANN(nn.Module):
def __init__(self, input_dim):
super(ANN, self).__init__()
self.fc1 = nn.Linear(input_dim, 32)
self.fc2 = nn.Linear(32, 32)
self.fc3 = nn.Linear(32, 1) # Output layer with 1 node
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.relu(self.fc2(x))
x = self.dropout(x)
x = self.fc3(x)
return x
class GNN(nn.Module):
def __init__(self, input_dim):
super(GNN, self).__init__()
self.conv1 = GCNConv(input_dim, 32)
self.conv2 = GCNConv(32, 16)
self.fc3 = nn.Linear(16, 1) # Output layer with 1 node
self.relu = nn.ReLU()
def forward(self, x, edge_index, batch):
# x, edge_index = data.x, data.edge_index
x = self.relu(self.conv1(x, edge_index))
x = self.relu(self.conv2(x, edge_index))
x = global_mean_pool(x, batch)
x = self.fc3(x)
return x