Skip to content

Commit

Permalink
kou's jump model (#633)
Browse files Browse the repository at this point in the history
* kou's jump model

* test and lit fix

* tet and lint fix 2

* test and isort  fix

* distribution generator fix

* example fix

* fix engine and example on cpu

* exaple fix for old torch

* example jump change

* change annual jumps in generate example

* jump mu instead of eta

* rebase and lint fix

* common tests for jump models

* lint fix

* lint fix:2

* full coverage test

* lint fix

* lint fix and remove redundant tests

* lint fix

* std for test modified for gpu tests jump test

* restore merton tests

* split tests

* lint fix

* remove common test files

* isort fix

* avoid test running when imported

* remove double testing

* alternative import for pytest

* lint fix

* lint fix

* full coverage test
  • Loading branch information
rhandal-pfn authored Aug 30, 2024
1 parent b6114c3 commit 4156d4d
Show file tree
Hide file tree
Showing 8 changed files with 746 additions and 277 deletions.
1 change: 1 addition & 0 deletions pfhedge/instruments/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from .primary.brownian import BrownianStock # NOQA
from .primary.cir import CIRRate # NOQA
from .primary.heston import HestonStock # NOQA
from .primary.kou_jump import KouJumpStock # noqa: F401
from .primary.local_volatility import LocalVolatilityStock # NOQA
from .primary.merton_jump import MertonJumpStock # NOQA
from .primary.rough_bergomi import RoughBergomiStock # NOQA
Expand Down
192 changes: 192 additions & 0 deletions pfhedge/instruments/primary/kou_jump.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
from math import ceil
from typing import Callable
from typing import Optional
from typing import Tuple
from typing import cast

import torch
from torch import Tensor

from pfhedge._utils.doc import _set_attr_and_docstring
from pfhedge._utils.doc import _set_docstring
from pfhedge._utils.str import _format_float
from pfhedge._utils.typing import TensorOrScalar
from pfhedge.stochastic import generate_kou_jump

from .base import BasePrimary


class KouJumpStock(BasePrimary):
r"""A stock of which spot prices follow the Kou's jump diffusion.
.. seealso::
- :func:`pfhedge.stochastic.generate_kou_jump`:
The stochastic process.
Args:
sigma (float, default=0.2): The parameter :math:`\sigma`,
which stands for the volatility of the spot price.
mu (float, default=0.0): The parameter :math:`\mu`,
which stands for the drift of the spot price.
jump_per_year (float, optional): Jump poisson process annual
lambda: Average number of annual jumps. Defaults to 1.0.
jump_mean_up (float, optional): Mu for the up jumps:
Instaneous value. Defaults to 0.02.
This has to be positive and smaller than 1.
jump_mean_down (float, optional): Mu for the down jumps:
Instaneous value. Defaults to 0.05.
This has to be larger than 0.
jump_up_prob (float, optional): Given a jump occurs,
this is conditional prob for up jump.
Down jump occurs with prob 1-jump_up_prob.
Has to be in [0,1].
cost (float, default=0.0): The transaction cost rate.
dt (float, default=1/250): The intervals of the time steps.
dtype (torch.device, optional): Desired device of returned tensor.
Default: If None, uses a global default
(see :func:`torch.set_default_tensor_type()`).
device (torch.device, optional): Desired device of returned tensor.
Default: if None, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type()`).
``device`` will be the CPU for CPU tensor types and
the current CUDA device for CUDA tensor types.
engine (callable, default=torch.randn): The desired generator of random numbers
from a standard normal distribution.
A function call ``engine(size, dtype=None, device=None)``
should return a tensor filled with random numbers
from a standard normal distribution.
Only to be used for the normal component,
jupms uses poisson distribution.
Buffers:
- spot (:class:`torch.Tensor`): The spot prices of the instrument.
This attribute is set by a method :meth:`simulate()`.
The shape is :math:`(N, T)` where
:math:`N` is the number of simulated paths and
:math:`T` is the number of time steps.
Examples:
>>> from pfhedge.instruments import KouJumpStock
>>>
>>> _ = torch.manual_seed(42)
>>> stock = KouJumpStock(jump_per_year = 10.0)
>>> stock.simulate(n_paths=2, time_horizon=5 / 250)
>>> stock.spot
tensor([[1.0000, 1.0021, 1.0055, 1.0089, 0.9952, 0.9933],
[1.0000, 0.9924, 0.9987, 1.0025, 1.0098, 1.0207]])
>>> stock.variance
tensor([[0.0400, 0.0400, 0.0400, 0.0400, 0.0400, 0.0400],
[0.0400, 0.0400, 0.0400, 0.0400, 0.0400, 0.0400]])
>>> stock.volatility
tensor([[0.2000, 0.2000, 0.2000, 0.2000, 0.2000, 0.2000],
[0.2000, 0.2000, 0.2000, 0.2000, 0.2000, 0.2000]])
"""

def __init__(
self,
sigma: float = 0.2,
mu: float = 0.0,
jump_per_year: float = 68.0,
jump_mean_up: float = 0.02,
jump_mean_down: float = 0.05,
jump_up_prob: float = 0.5,
cost: float = 0.0,
dt: float = 1 / 250,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
engine: Callable[..., Tensor] = torch.randn,
) -> None:
super().__init__()

self.sigma = sigma
self.mu = mu
self.jump_per_year = jump_per_year
self.jump_mean_up = jump_mean_up
self.jump_mean_down = jump_mean_down
self.jump_up_prob = jump_up_prob
self.cost = cost
self.dt = dt
self.engine = engine

self.to(dtype=dtype, device=device)

@property
def default_init_state(self) -> Tuple[float, ...]:
return (1.0,)

@property
def volatility(self) -> Tensor:
"""Returns the volatility of self.
It is a tensor filled with ``self.sigma``.
"""
return torch.full_like(self.get_buffer("spot"), self.sigma)

@property
def variance(self) -> Tensor:
"""Returns the volatility of self.
It is a tensor filled with the square of ``self.sigma``.
"""
return torch.full_like(self.get_buffer("spot"), self.sigma ** 2)

def simulate(
self,
n_paths: int = 1,
time_horizon: float = 20 / 250,
init_state: Optional[Tuple[TensorOrScalar]] = None,
) -> None:
"""Simulate the spot price and add it as a buffer named ``spot``.
The shape of the spot is :math:`(N, T)`, where :math:`N` is the number of
simulated paths and :math:`T` is the number of time steps.
The number of time steps is determinded from ``dt`` and ``time_horizon``.
Args:
n_paths (int, default=1): The number of paths to simulate.
time_horizon (float, default=20/250): The period of time to simulate
the price.
init_state (tuple[torch.Tensor | float], optional): The initial state of
the instrument.
This is specified by a tuple :math:`(S(0),)` where
:math:`S(0)` is the initial value of the spot price.
If ``None`` (default), it uses the default value
(See :attr:`default_init_state`).
It also accepts a :class:`float` or a :class:`torch.Tensor`.
"""
if init_state is None:
init_state = cast(Tuple[float], self.default_init_state)

spot = generate_kou_jump(
n_paths=n_paths,
n_steps=ceil(time_horizon / self.dt + 1),
init_state=init_state,
sigma=self.sigma,
mu=self.mu,
jump_per_year=self.jump_per_year,
jump_mean_up=self.jump_mean_up,
jump_mean_down=self.jump_mean_down,
jump_up_prob=self.jump_up_prob,
dt=self.dt,
dtype=self.dtype,
device=self.device,
engine=self.engine,
)

self.register_buffer("spot", spot)

def extra_repr(self) -> str:
params = ["sigma=" + _format_float(self.sigma)]
params.append("mu=" + _format_float(self.mu))
params.append("cost=" + _format_float(self.cost))
params.append("dt=" + _format_float(self.dt))
params.append("jump_per_year=" + _format_float(self.jump_per_year))
params.append("jump_mean_up=" + _format_float(self.jump_mean_up))
params.append("jump_mean_down=" + _format_float(self.jump_mean_down))
params.append("jump_up_prob=" + _format_float(self.jump_up_prob))
return ", ".join(params)


# Assign docstrings so they appear in Sphinx documentation
_set_docstring(KouJumpStock, "default_init_state", BasePrimary.default_init_state)
_set_attr_and_docstring(KouJumpStock, "to", BasePrimary.to)
1 change: 1 addition & 0 deletions pfhedge/stochastic/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from .brownian import generate_geometric_brownian # NOQA
from .cir import generate_cir # NOQA
from .heston import generate_heston # NOQA
from .kou_jump import generate_kou_jump # noqa: F401
from .local_volatility import generate_local_volatility_process # NOQA
from .merton_jump import generate_merton_jump # NOQA
from .random import randn_antithetic # NOQA
Expand Down
Loading

0 comments on commit 4156d4d

Please sign in to comment.