-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCost_benefit_table_pooled.R
371 lines (292 loc) · 20.2 KB
/
Cost_benefit_table_pooled.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
## ---- include=F-----------------------------------------------------------------------------------------------
rm(list = ls())
options(tinytex.verbose = TRUE)
## ----setup, include=FALSE-------------------------------------------------------------------------------------
# Loading required libraries
list.of.packages <- c("tidyverse", "haven", "here", "kableExtra")
lapply(list.of.packages, library, character.only = TRUE)
library(rootSolve)
knitr::opts_knit$set(root.dir = here())
knitr::opts_chunk$set(echo = F)
print_code <- TRUE
## ----parameters-----------------------------------------------------------------------------------------------
# Parameters (see SI Appendix, Section D for details)
gov_bonds_so <- 0.09 # Interest rate on government bonds
inflation_so <- 0.04 # Kenyan inflation rate
tax_so <- 0.16575 # Taxes as a share of GDP
unit_cost_so <- 0.42 # Unit cost of deworming (in 2018 USD) - from Evidence Action
periods_so <- 50 #Total number of periods to forecast wages
time_to_jm_so <- 10 #Time from intial period until individual join the labor force
years_of_treat_so <- 2.41 # Additional Years of Deworming Treatment for Groups 1 & 2
q_full_so <- 0.75 #Take up rates with full subsidy. From Miguel and Kremmer (2007)
q_zero_so <- 0 #Take up rates with zero subsidy. From Miguel and Kremmer (2007)
# Schooling costs
teach_sal_so <- 50000 #Monthly secondary schooling compensation (in 2017 KES) overestimated to account for benefits - news sources
teach_sal_so <- 12*teach_sal_so #Yearly secondary schooling compensation
n_students_so <- 45 #Average pupils per teacher 45
delta_ed_so <- c(-0.00176350949079451, # (Delta E) Additional direct seconday schooling increase
0.00696052250263997,
0.0258570306763183,
0.0239963665555466,
0.027301406306074,
0.0234125454594173,
0.0279278879439199,
0.00647044449446303,
0.00835739437790601)
delta_ed_so <- cbind(delta_ed_so, 1999:2007)
# Treatment effect estimates - using pooled numbers at 10, 15, 20 year horizons
lambda1_2017usdppp_so <- c(79.51465, # avg treatment effect from klps2-4 pooled (already adjusted for ppp and inflation) -- Table 1
79.51465, # avg treatment effect from klps2-4 pooled (already adjusted for ppp and inflation) - Table 1
79.51465) # avg treatment effect from klps2-4 pooled (already adjusted for ppp and inflation) - Table 1
consump_2017usdppp_so <- c(0, # assume 0 treatment effect at 10 years
305.108, # avg treatment effect from klps3-4 pooled (already adjusted for ppp and inflation) - Table 1
305.108) # avg treatment effect from klps3-4 pooled (already adjusted for ppp and inflation) - Table 1
# Inflation and exchange rates
ex_rate_2018 <-101.30 # Exchange rate (KES per international $) - https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=KE
ex_rate_2009 <- 77.352 # Exchange rate (KES per international $) - https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=KE
ex_rate_2007 <- 67.318 # Exchange rate (KES per international $) - https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=KE
ex_rate_2018_ppp_so <- 50.058 # KLPS4_E+_globals.do (originally from the World Bank)
ex_rate_2017_ppp_so <- 49.773 # KLPS4_E+_globals.do (originally from the World Bank)
ex_rate_2009_ppp_so <- 31.317 # KLPS4_E+_globals.do (originally from the World Bank)
ex_rate_2007_ppp_so <- 25.024 # KLPS4_E+_globals.do (originally from the World Bank)
cpi_2007_so <- 207.342 # KLPS4_E+_globals.do (originally from the Bureau of Labor Statistics)
cpi_2009_so <- 214.537 # KLPS4_E+_globals.do (originally from the Bureau of Labor Statistics)
cpi_2018_so <- 251.10 # KLPS4_E+_globals.do (originally from the Bureau of Labor Statistics)
cpi_2017_so <- 245.120 # KLPS4_E+_globals.do (originally from the Bureau of Labor Statistics)
# Research
# CALCULATIONS TO CONVERT ALL CURRENCY TO 2017 USD PPP (will need to be updated if monetary inputs are updated)
# Adjust for currency: convert all costs to USD PPP **NOTE: 1 international dollar = 1 USD (https://data.worldbank.org/indicator/PA.NUS.PRVT.PP?locations=KE-US)***
unit_cost_ppp_so <- unit_cost_so*ex_rate_2018/ex_rate_2018_ppp_so
teach_sal_ppp_so <- teach_sal_so/ex_rate_2017_ppp_so
# Adjust for inflation: convert all costs to 2017 USD
unit_cost_2017usdppp_so <- unit_cost_ppp_so*cpi_2017_so/cpi_2018_so
teach_sal_2017usdppp_so <- teach_sal_ppp_so*cpi_2017_so/cpi_2017_so # redundant, but for the sake of consistency
## ----model----------------------------------------------------------------------------------------------------
###########################
# CONSTUCTING MODEL #
###########################
npv_mo_f <- function(interest_r_var = interest_in,
n_male_var = 1/2, n_female_var = 1/2,
delta_welfare_var,
tax_var = tax_so,
cost_of_schooling_var = cost_per_student_in,
delta_ed_male_var = delta_ed_so[,1],
delta_ed_female_var = delta_ed_so[,1],
s1_var = 0, q1_var = 0, s2_var = s2_in, q2_var = q2_in,
periods_var = periods_so, years_of_treat_var = years_of_treat_so) {
ns <- c(n_male_var, n_female_var)
l_index_t <- 0:periods_var
delta_ed_s <- cbind(delta_ed_male_var, delta_ed_female_var)
delta_ed_s <- rbind(c(0,0), delta_ed_s, matrix(0,41, 2) )
###############################################################################
benef <- matrix(NA, 51,2)
for (i in 1:2){
benef[,i] <- ( 1 / (1 + interest_r_var) )^l_index_t * delta_welfare_var
}
res1 <- sum( ns * ( tax_var * apply(benef, 2, sum) -
apply( ( 1 / (1 + interest_r_var) )^l_index_t *
delta_ed_s * cost_of_schooling_var, 2, sum) )) -
sum( ( 1 / (1 + interest_r_var) )^(0:2) * (s2_var * q2_var - s1_var * q1_var) )
###############################################################################
return(res1)
}
## ----interest-rate--------------------------------------------------------------------------------------------
# - inputs: gov_bonds_so, inflation_so
# - inputs: gov_bonds_so, inflation_so
# - outputs: interest_in
interest_in_f <- function(gov_bonds_var = gov_bonds_so , inflation_var = inflation_so) {
###############################################################################
interest_in = gov_bonds_var - inflation_var
###############################################################################
return(list("interest_in" = interest_in))
}
invisible( list2env(interest_in_f(),.GlobalEnv) )
## ----costs----------------------------------------------------------------------------------------------------
# - inputs:
# - inputs:
# - outputs:
costs_f <- function(unit_cost_var = unit_cost_2017usdppp_so,
years_of_treat_var = years_of_treat_so,
q_full_var = q_full_so){
###############################################################################
s2_in <- c(rep(unit_cost_var,2), .4*unit_cost_var)
q2_in <- q_full_var
###############################################################################
return(list("s2_in" = s2_in, "q2_in" = q2_in))
}
invisible( list2env(costs_f(),.GlobalEnv) )
## ----ed-costs-------------------------------------------------------------------------------------------------
# - inputs: coverage_so, q_full_so, q_zero_so
# - outputs: saturation_in
ed_costs_in_f <- function(teach_sal_var = teach_sal_2017usdppp_so,
n_students_var = n_students_so,
delta_ed_var = delta_ed_so[,1]){
###############################################################################
cost_per_student_in <- (teach_sal_var)/ n_students_var
delta_ed_in <- delta_ed_var
###############################################################################
return(list("cost_per_student_in" = cost_per_student_in, "delta_ed_in" = delta_ed_in))
}
invisible( list2env(ed_costs_in_f(),.GlobalEnv) )
## ----delta_earnings, eval=TRUE--------------------------------------------------------------------------------
# - inputs: periods_so, lambda1_2017usdppp_so
# - outputs:
delta_welfare_in_f <- function(t_var = 0:periods_so,
welfarek1_var,
welfarek2_var,
welfarek3_var) {
###############################################################################
delta_welfare_in <- 1*(10 <= t_var & t_var < 15) * welfarek1_var +
1*(15 <= t_var & t_var < 20) * welfarek2_var +
1*(20 <= t_var & t_var < 25) * welfarek3_var
###############################################################################
return(delta_welfare_in)
}
## ----delta_earnings_p, eval=TRUE------------------------------------------------------------------------------
# - inputs: periods_so, lambda1_2017usdppp_so
# - outputs:
delta_welfare_p_in_f <- function(t_var = 0:periods_so,
welfarek1_var,
welfarek2_var,
welfarek3_var) {
###############################################################################
delta_welfare_p_in <- 1*(10 <= t_var & t_var < 15) * welfarek1_var +
1*(15 <= t_var & t_var < 20) * welfarek2_var +
1*(20 <= t_var) * welfarek3_var
###############################################################################
return(delta_welfare_p_in)
}
## ----earnings, eval=TRUE--------------------------------------------------------------------------------------
delta_earnings_in = delta_welfare_in_f(welfarek1_var = lambda1_2017usdppp_so[1],
welfarek2_var = lambda1_2017usdppp_so[2],
welfarek3_var = lambda1_2017usdppp_so[3])
delta_earnings_p_in = delta_welfare_p_in_f(welfarek1_var = lambda1_2017usdppp_so[1],
welfarek2_var = lambda1_2017usdppp_so[2],
welfarek3_var = lambda1_2017usdppp_so[3])
## ----consumption, eval=TRUE-----------------------------------------------------------------------------------
delta_consumption_in = delta_welfare_in_f(welfarek1_var = consump_2017usdppp_so[1],
welfarek2_var = consump_2017usdppp_so[2],
welfarek3_var = consump_2017usdppp_so[3])
delta_consumption_p_in = delta_welfare_p_in_f(welfarek1_var = consump_2017usdppp_so[1],
welfarek2_var = consump_2017usdppp_so[2],
welfarek3_var = consump_2017usdppp_so[3])
## ----model_cwelfare-------------------------------------------------------------------------------------------
npv_cwelfare_p_mo_f <- function(interest_r_var = interest_in,
n_male_var = 1/2, n_female_var = 1/2,
delta_welfare_var,
lambda1_male_var = lambda1_2017usdppp_so[1],
lambda1_female_var = lambda1_2017usdppp_so[2],
tax_var = tax_so,
cost_of_schooling_var = cost_per_student_in,
delta_ed_male_var = delta_ed_so[,1],
delta_ed_female_var = delta_ed_so[,1],
s1_var = 0, q1_var = 0, s2_var = s2_in, q2_var = q2_in,
periods_var = periods_so, years_of_treat_var = years_of_treat_so) {
ns <- c(n_male_var, n_female_var)
l_index_t <- 0:periods_var
delta_ed_s <- cbind(delta_ed_male_var, delta_ed_female_var)
delta_ed_s <- rbind(c(0,0), delta_ed_s, matrix(0,41, 2) )
###############################################################################
benef <- matrix(NA, 51,2)
for (i in 1:2){
benef[,i] <- ( 1 / (1 + interest_r_var) )^l_index_t * (1*(10 <= l_index_t & l_index_t < 15) * delta_welfare_var + 1*(15 <= l_index_t & l_index_t < 20) * delta_welfare_var +1*(20 <= l_index_t) * delta_welfare_var)
}
res1 <- sum( ns * ( tax_var * apply(benef, 2, sum) -
apply( ( 1 / (1 + interest_r_var) )^l_index_t *
delta_ed_s * cost_of_schooling_var, 2, sum) )) -
sum( ( 1 / (1 + interest_r_var) )^(0:2) * (s2_var * q2_var - s1_var * q1_var) )
###############################################################################
return(res1)
}
npv_cwelfare_d_mo_f <- function(interest_r_var = interest_in,
n_male_var = 1/2, n_female_var = 1/2,
delta_welfare_var,
lambda1_male_var = lambda1_2017usdppp_so[1],
lambda1_female_var = lambda1_2017usdppp_so[2],
tax_var = tax_so,
cost_of_schooling_var = cost_per_student_in,
delta_ed_male_var = delta_ed_so[,1],
delta_ed_female_var = delta_ed_so[,1],
s1_var = 0, q1_var = 0, s2_var = s2_in, q2_var = q2_in,
periods_var = periods_so, years_of_treat_var = years_of_treat_so) {
ns <- c(n_male_var, n_female_var)
l_index_t <- 0:periods_var
delta_ed_s <- cbind(delta_ed_male_var, delta_ed_female_var)
delta_ed_s <- rbind(c(0,0), delta_ed_s, matrix(0,41, 2) )
###############################################################################
benef <- matrix(NA, 51,2)
for (i in 1:2){
benef[,i] <- ( 1 / (1 + interest_r_var) )^l_index_t * (1*(10 <= l_index_t & l_index_t < 15) * delta_welfare_var + 1*(15 <= l_index_t & l_index_t < 20) * delta_welfare_var + 1*(20 <= l_index_t & l_index_t < 25) * delta_welfare_var)
}
res1 <- sum( ns * ( tax_var * apply(benef, 2, sum) -
apply( ( 1 / (1 + interest_r_var) )^l_index_t * delta_ed_s * cost_of_schooling_var, 2, sum) )
) - sum( ( 1 / (1 + interest_r_var) )^(0:2) * (s2_var * q2_var - s1_var * q1_var) )
###############################################################################
return(res1)
}
## ----table 1 results------------------------------------------------------------------------------------------
######################
# TABLE CALCULATIONS #
######################
#########
# PANEL A
#########
e_social_persist_int10 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.10), 4, maxiter=1000000, positive = T))$root
e_social_persist_int05 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.05), 4, maxiter=1000000, positive = T))$root
e_social_die_int10 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.10), 4, maxiter=1000000, positive = T))$root
e_social_die_int05 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.05), 4, maxiter=1000000, positive = T))$root
e_tax_persist_int10 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, interest_r_var = 0.10), 4, maxiter=10000000, positive = T))$root
e_tax_persist_int05 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, interest_r_var = 0.05), 4, maxiter=10000000, positive = T))$root
e_tax_die_int10 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, interest_r_var = 0.10), 4, maxiter=10000000, positive = T))$root
e_tax_die_int05 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, interest_r_var = 0.05), 4, maxiter=10000000, positive = T))$root
#########
# PANEL B
#########
# Net Present Value (2017 USD PPP)
e_npv_int05_persist <- npv_mo_f(delta_welfare_var = delta_earnings_p_in, tax_var = 1)
e_npv_int05_die <- npv_mo_f(delta_welfare_var = delta_earnings_in, tax_var = 1)
e_npv_int10_persist <- npv_mo_f(delta_welfare_var = delta_earnings_p_in, interest_r_var = 0.10, tax_var = 1)
e_npv_int10_die <- npv_mo_f(delta_welfare_var = delta_earnings_in, interest_r_var = 0.10, tax_var = 1)
# Net Present Value of tax revenue (2017 USD PPP)
e_tax_int05_persist <- npv_mo_f(delta_welfare_var = delta_earnings_p_in, interest_r_var = .05)
e_tax_int05_die <- npv_mo_f(delta_welfare_var = delta_earnings_in, interest_r_var = .05)
e_tax_int10_persist <- npv_mo_f(delta_welfare_var = delta_earnings_p_in, interest_r_var = 0.10)
e_tax_int10_die <- npv_mo_f(delta_welfare_var = delta_earnings_in, interest_r_var = 0.10)
#########
# PANEL C
#########
e_irr_social_persist <- (multiroot(function(x) npv_mo_f(interest_r_var = x, tax_var = 1, delta_welfare_var = delta_earnings_p_in), .1, maxiter=1000000, positive = T))$root
e_irr_social_die <- (multiroot(function(x) npv_mo_f(interest_r_var = x, tax_var = 1, delta_welfare_var = delta_earnings_in), .1, maxiter=10000000, positive = T))$root
e_irr_tax_persist <- (multiroot(function(x) npv_mo_f(interest_r_var = x, delta_welfare_var = delta_earnings_p_in), .1, maxiter=1000000, positive = T))$root
e_irr_tax_die <- (multiroot(function(x) npv_mo_f(interest_r_var = x, delta_welfare_var = delta_earnings_in), .1, maxiter=1000000, positive = T))$root
#########
# PANEL A
#########
c_social_persist_int10 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.10), 4, maxiter=1000000, positive = T))$root
c_social_persist_int05 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.05), 4, maxiter=1000000, positive = T))$root
c_social_die_int10 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.10), 4, maxiter=1000000, positive = T))$root
c_social_die_int05 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, tax_var = 1, interest_r_var = 0.05), 4, maxiter=1000000, positive = T))$root
c_tax_persist_int10 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, interest_r_var = 0.10), 4, maxiter=1000000, positive = T))$root
c_tax_persist_int05 <- (multiroot(function(x) npv_cwelfare_p_mo_f(delta_welfare_var = x, interest_r_var = 0.05), 4, maxiter=1000000, positive = T))$root
c_tax_die_int10 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, interest_r_var = 0.10), 4, maxiter=1000000, positive = T))$root
c_tax_die_int05 <- (multiroot(function(x) npv_cwelfare_d_mo_f(delta_welfare_var = x, interest_r_var = 0.05), 4, maxiter=1000000, positive = T))$root
#########
# PANEL B
#########
# Net Present Value (2017 USD PPP)
c_npv_int05_persist <- npv_mo_f(delta_welfare_var = delta_consumption_p_in, interest_r_var = 0.05, tax_var = 1)
c_npv_int05_die <- npv_mo_f(delta_welfare_var = delta_consumption_in, interest_r_var = 0.05, tax_var = 1)
c_npv_int10_persist <- npv_mo_f(delta_welfare_var = delta_consumption_p_in, interest_r_var = 0.10, tax_var = 1)
c_npv_int10_die <- npv_mo_f(delta_welfare_var = delta_consumption_in, interest_r_var = 0.10, tax_var = 1)
# Net Present Value of tax revenue (2017 USD PPP)
c_tax_int05_persist <- npv_mo_f(delta_welfare_var = delta_consumption_p_in, interest_r_var = 0.05)
c_tax_int05_die <- npv_mo_f(delta_welfare_var = delta_consumption_in, interest_r_var = 0.05)
c_tax_int10_persist <- npv_mo_f(delta_welfare_var = delta_consumption_p_in, interest_r_var = 0.10)
c_tax_int10_die <- npv_mo_f(delta_welfare_var = delta_consumption_in, interest_r_var = 0.10)
#########
# PANEL C
#########
c_irr_social_persist <- (multiroot(function(x) npv_mo_f(interest_r_var = x, tax_var = 1, delta_welfare_var = delta_consumption_p_in), .1, maxiter=1000000, positive = T))$root
c_irr_social_die <- (multiroot(function(x) npv_mo_f(interest_r_var = x, tax_var = 1, delta_welfare_var = delta_consumption_in), .1, maxiter=1000000, positive = T))$root
c_irr_tax_persist <- (multiroot(function(x) npv_mo_f(interest_r_var = x, delta_welfare_var = delta_consumption_p_in), .1, maxiter=1000000, positive = T))$root
c_irr_tax_die <- (multiroot(function(x) npv_mo_f(interest_r_var = x, delta_welfare_var = delta_consumption_in), .1, maxiter=1000000, positive = T))$root