-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
217 lines (183 loc) · 6.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import jax
import jax.numpy as jnp
from jax import lax
from jax.tree_util import pytree
import optax
import pickle
from pathlib import Path
from typing import Union
__all__ = ["save_pytree", "load_pytree", "loss_fn", "init_optimizers"]
suffix = ".pt"
def save_pytree(path: Union[str, Path], data: pytree, overwrite: bool = False):
path = Path(path)
if path.suffix != suffix:
path = path.with_suffix(suffix)
path.parent.mkdir(parents=True, exist_ok=True)
if path.exists():
if overwrite:
path.unlink()
else:
raise FileExistsError(f"File {path} already exists.")
with open(path, "wb") as file:
pickle.dump(data, file)
def load_pytree(path: Union[str, Path]) -> pytree:
path = Path(path)
if not path.is_file():
raise ValueError(f"Not a file: {path}")
if path.suffix != suffix:
raise ValueError(f"Not a {suffix} file: {path}")
with open(path, "rb") as file:
data = pickle.load(file)
return data
def loss_fn(
model_apply,
params,
batch,
target,
scale=None,
deriv_weight=None,
reg_dzdt=None,
reg_dzdt_var_norm=True,
reg_l1_sparse=None,
sym_model_name="sym_model",
):
num_der = target.shape[-1]
if scale is None:
scale = jnp.ones(1, num_der + 1)
if deriv_weight is None:
deriv_weight = jnp.ones(num_der)
if reg_dzdt is not None:
x = batch[..., 0]
dxdt = batch[..., 1] * scale[:, 1] / scale[:, 0]
sym_deriv_x, z_hidden, dzdt_hidden, sym_dzdt_hidden = model_apply(
params, x, dxdt
)
else:
sym_deriv_x, z_hidden = model_apply(params, batch)
# scale to normed derivatives
scaled_sym_deriv_x = sym_deriv_x * scale[:, [0]] / scale[:, 1:]
# MSE loss
mse_loss = jnp.sum(
deriv_weight
* jnp.mean(((target - scaled_sym_deriv_x) ** 2).reshape(-1, num_der), axis=0)
)
loss_list = [mse_loss]
# dz/dt regularization loss
if reg_dzdt is not None:
num_hidden = dzdt_hidden.shape[-1]
if reg_dzdt_var_norm:
reg_dzdt_loss = reg_dzdt * jnp.mean(
(dzdt_hidden - sym_dzdt_hidden) ** 2
/ jnp.var(z_hidden.reshape(-1, num_hidden), axis=0)
)
else:
reg_dzdt_loss = reg_dzdt * jnp.mean((dzdt_hidden - sym_dzdt_hidden) ** 2)
loss_list.append(reg_dzdt_loss)
# L1 sparse regularization loss
if reg_l1_sparse is not None:
reg_l1_sparse_loss = reg_l1_sparse * jax.tree_util.tree_reduce(
lambda x, y: x + jnp.abs(y).sum(), params[sym_model_name], 0.0
)
loss_list.append(reg_l1_sparse_loss)
loss = sum(loss_list)
loss_list.insert(0, loss)
return loss, loss_list
def loss_fn_weighted(
model_apply,
params,
batch,
target,
weight,
scale=None,
deriv_weight=None,
reg_dzdt=None,
reg_dzdt_var_norm=True,
reg_l1_sparse=None,
sym_model_name="sym_model",
):
num_der = target.shape[-1]
if scale is None:
scale = jnp.ones(1, num_der + 1)
if deriv_weight is None:
deriv_weight = jnp.ones(num_der)
if reg_dzdt is not None:
x = batch[..., 0]
dxdt = batch[..., 1] * scale[:, 1] / scale[:, 0]
sym_deriv_x, z_hidden, dzdt_hidden, sym_dzdt_hidden = model_apply(
params, x, dxdt
)
else:
sym_deriv_x, z_hidden = model_apply(params, batch)
# scale to normed derivatives
scaled_sym_deriv_x = sym_deriv_x * scale[:, [0]] / scale[:, 1:]
# MSE loss
mse_loss = jnp.sum(
deriv_weight
* jnp.mean(
(weight * (target - scaled_sym_deriv_x) ** 2).reshape(-1, num_der), axis=0
)
)
loss_list = [mse_loss]
# dz/dt regularization loss
if reg_dzdt is not None:
num_hidden = dzdt_hidden.shape[-1]
if reg_dzdt_var_norm:
reg_dzdt_loss = reg_dzdt * jnp.mean(
(dzdt_hidden - sym_dzdt_hidden) ** 2
/ jnp.var(z_hidden.reshape(-1, num_hidden), axis=0)
)
else:
reg_dzdt_loss = reg_dzdt * jnp.mean(
weight[..., 0] * (dzdt_hidden - sym_dzdt_hidden) ** 2
)
loss_list.append(reg_dzdt_loss)
# L1 sparse regularization loss
if reg_l1_sparse is not None:
reg_l1_sparse_loss = reg_l1_sparse * jax.tree_util.tree_reduce(
lambda x, y: x + jnp.abs(y).sum(), params[sym_model_name], 0.0
)
loss_list.append(reg_l1_sparse_loss)
loss = sum(loss_list)
loss_list.insert(0, loss)
return loss, loss_list
def init_optimizers(
params,
optimizers,
sparsify=False,
multi_gpu=False,
sym_model_name="sym_model",
pmap_axis_name="devices",
):
# Initialize optimizers
opt_init, opt_update, opt_state = {}, {}, {}
for name in params.keys():
opt_init[name], opt_update[name] = optimizers[name]
if multi_gpu:
opt_state[name] = jax.pmap(opt_init[name])(params[name])
else:
opt_state[name] = opt_init[name](params[name])
# Define update function
def update_params(grads, opt_state, params, sparse_mask):
if sparsify:
grads[sym_model_name] = jax.tree_multimap(
jnp.multiply, sparse_mask, grads[sym_model_name]
)
updates = {}
for name in params.keys():
updates[name], opt_state[name] = opt_update[name](
grads[name], opt_state[name], params[name]
)
params = optax.apply_updates(params, updates)
if sparsify:
params[sym_model_name] = jax.tree_multimap(
jnp.multiply, sparse_mask, params[sym_model_name]
)
# TODO: This may not be necessary or can at least be reduced in frequency
if multi_gpu:
# Ensure params, opt_state, sparse_mask are the same across all devices
params = lax.pmean(params, axis_name=pmap_axis_name)
opt_state, sparse_mask = lax.pmax(
(opt_state, sparse_mask), axis_name=pmap_axis_name
)
return params, opt_state, sparse_mask
return update_params, opt_state