-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
83 lines (72 loc) · 2.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch.nn as nn
import torch.nn.functional as F
import torch
def deconv(c_in, c_out, k_size, stride=2, pad=1, bn=True):
"""Custom deconvolutional layer for simplicity."""
layers = []
layers.append(nn.ConvTranspose2d(c_in, c_out, k_size, stride, pad, bias=False))
if bn:
layers.append(nn.BatchNorm2d(c_out))
return nn.Sequential(*layers)
def conv(c_in, c_out, k_size, stride=2, pad=1, bn=True):
"""Custom convolutional layer for simplicity."""
layers = []
layers.append(nn.Conv2d(c_in, c_out, k_size, stride, pad, bias=False))
if bn:
layers.append(nn.BatchNorm2d(c_out))
return nn.Sequential(*layers)
class ConvEncoder(nn.Module):
def __init__(self, c_in=3, out_dim=1024, conv_dim=64, bn=True, norm=True):
super(ConvEncoder, self).__init__()
self.conv1 = conv(c_in, conv_dim, 4, bn=bn)
self.conv2 = conv(conv_dim, conv_dim * 2, 4, bn=bn)
self.conv3 = conv(conv_dim * 2, conv_dim * 2, 3, 1, 1, bn=bn)
self.conv4 = conv(conv_dim * 2, conv_dim * 2, 3, 1, 1, bn=bn)
self.conv5 = conv(conv_dim * 2, out_dim, 8, 1, 0, bn=bn)
self.norm = norm
def forward(self, x):
out = F.relu(self.conv1(x)) # (?, 64, 16, 16)
out = F.relu(self.conv2(out)) # (?, 128, 8, 8)
out = F.relu(self.conv3(out)) # ( " )
out = F.relu(self.conv4(out)) # ( " )
out = self.conv5(out)
if self.norm:
norm_x = torch.norm(out, dim=1, keepdim=True)
norm_x = norm_x + (norm_x == 0).float()
out = out / norm_x
return [out]
class ConvDecoder(nn.Module):
def __init__(self, c_in=1024, c_out=3, conv_dim=64, bn=True, norm=True):
super(ConvDecoder, self).__init__()
self.deconv0 = deconv(c_in, conv_dim * 2, 8, 1, 0)
self.deconv1 = deconv(conv_dim * 2, conv_dim, 4)
self.deconv2 = deconv(conv_dim, c_out, 4, bn=False)
self.norm = norm
def forward(self, x):
out = F.relu(self.deconv0(x))
out = F.relu(self.deconv1(out))
out = F.tanh(self.deconv2(out))
if self.norm:
norm_x = torch.norm(out, dim=1, keepdim=True)
norm_x = norm_x + (norm_x == 0).float()
out = out / norm_x
return [out]
class Dense_Net(nn.Module):
"""Generator for transfering from svhn to mnist"""
def __init__(self, input_dim=28*28, out_dim=20, norm=True):
super(Dense_Net, self).__init__()
mid_num = 4096
self.fc1 = nn.Linear(input_dim, mid_num)
self.fc2 = nn.Linear(mid_num, mid_num)
self.fc3 = nn.Linear(mid_num, out_dim)
self.dropout = nn.Dropout(p=0.2)
self.norm = norm
def forward(self, x):
out1 = F.relu(self.fc1(x))
out2 = F.relu(self.fc2(out1))
out3 = self.fc3(out2)
if self.norm:
norm_x = torch.norm(out3, dim=1, keepdim=True)
norm_x = norm_x + (norm_x == 0).float()
out3 = out3 / norm_x
return [out1, out3]