-
Notifications
You must be signed in to change notification settings - Fork 0
/
mac_section.go
937 lines (845 loc) · 37.2 KB
/
mac_section.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
package goip
import (
"math/big"
"github.com/pchchv/goip/address_error"
"github.com/pchchv/goip/address_string"
)
var (
macMaxValues = []uint64{0, MACMaxValuePerSegment, 0xffff, 0xffffff, 0xffffffff, 0xffffffffff, 0xffffffffffff, 0xffffffffffffff, 0xffffffffffffffff}
dottedParams = new(address_string.MACStringOptionsBuilder).SetSeparator(MacDottedSegmentSeparator).SetExpandedSegments(true).ToOptions()
macCanonicalParams = new(address_string.MACStringOptionsBuilder).SetSeparator(MACDashSegmentSeparator).SetExpandedSegments(true).SetWildcards(canonicalWildcards).ToOptions()
canonicalWildcards = new(address_string.WildcardsBuilder).SetRangeSeparator(MacDashedSegmentRangeSeparatorStr).SetWildcard(SegmentWildcardStr).ToWildcards()
macNormalizedParams = new(address_string.MACStringOptionsBuilder).SetExpandedSegments(true).ToOptions()
macCompressedParams = new(address_string.MACStringOptionsBuilder).ToOptions()
spaceDelimitedParams = new(address_string.MACStringOptionsBuilder).SetSeparator(MacSpaceSegmentSeparator).SetExpandedSegments(true).ToOptions()
)
// MACAddressSection is a section of a MACAddress.
//
// It is a series of 0 to 8 individual MAC address segments.
type MACAddressSection struct {
addressSectionInternal
}
// IsMultiple returns whether this section represents multiple values.
func (section *MACAddressSection) IsMultiple() bool {
return section != nil && section.isMultiple()
}
// IsPrefixed returns whether this section has an associated prefix length.
func (section *MACAddressSection) IsPrefixed() bool {
return section != nil && section.isPrefixed()
}
// ToSectionBase converts to an AddressSection,
// a polymorphic type usable with all address sections.
// Afterwards, you can convert back with ToMAC.
//
// ToSectionBase can be called with a nil receiver,
// enabling you to chain this method with methods that might return a nil pointer.
func (section *MACAddressSection) ToSectionBase() *AddressSection {
return (*AddressSection)(section)
}
// ToDivGrouping converts to an AddressDivisionGrouping,
// a polymorphic type usable with all address sections and division groupings.
// Afterwards, you can convert back with ToMAC.
//
// ToDivGrouping can be called with a nil receiver,
// enabling you to chain this method with methods that might return a nil pointer.
func (section *MACAddressSection) ToDivGrouping() *AddressDivisionGrouping {
return section.ToSectionBase().ToDivGrouping()
}
// IsAdaptiveZero returns true if the division grouping was originally created as
// an implicitly zero-valued section or grouping (e.g. IPv4AddressSection{}),
// meaning it was not constructed using a constructor function.
// Such a grouping, which has no divisions or segments,
// is convertible to an implicitly zero-valued grouping of any type or version, whether IPv6, IPv4, MAC, or other.
// In other words, when a section or grouping is the zero-value,
// then it is equivalent and convertible to the zero value of any other section or grouping type.
func (section *MACAddressSection) IsAdaptiveZero() bool {
return section != nil && section.matchesZeroGrouping()
}
func (section *MACAddressSection) getLongValue(lower bool) (result uint64) {
segCount := section.GetSegmentCount()
if segCount == 0 {
return
}
seg := section.GetSegment(0)
if lower {
result = uint64(seg.GetSegmentValue())
} else {
result = uint64(seg.GetUpperSegmentValue())
}
bitsPerSegment := section.GetBitsPerSegment()
for i := 1; i < segCount; i++ {
result = result << uint(bitsPerSegment)
seg = section.GetSegment(i)
if lower {
result |= uint64(seg.GetSegmentValue())
} else {
result |= uint64(seg.GetUpperSegmentValue())
}
}
return
}
// ToPrefixBlock returns the section with the same prefix as this section while the remaining bits span all values.
// The returned section will be the block of all sections with the same prefix.
//
// If this section has no prefix, this section is returned.
func (section *MACAddressSection) ToPrefixBlock() *MACAddressSection {
return section.toPrefixBlock().ToMAC()
}
// ToPrefixBlockLen returns the section with the same prefix of the given length as this section while the remaining bits span all values.
// The returned section will be the block of all sections with the same prefix.
func (section *MACAddressSection) ToPrefixBlockLen(prefLen BitCount) *MACAddressSection {
return section.toPrefixBlockLen(prefLen).ToMAC()
}
// ToBlock creates a new block of address sections by changing the segment at the given index to have the given lower and upper value,
// and changing the following segments to be full-range.
func (section *MACAddressSection) ToBlock(segmentIndex int, lower, upper SegInt) *MACAddressSection {
return section.toBlock(segmentIndex, lower, upper).ToMAC()
}
// GetBitsPerSegment returns the number of bits comprising each segment in this section.
// Segments in the same address section are equal length.
func (section *MACAddressSection) GetBitsPerSegment() BitCount {
return MACBitsPerSegment
}
// GetBytesPerSegment returns the number of bytes comprising each segment in this section.
// Segments in the same address section are equal length.
func (section *MACAddressSection) GetBytesPerSegment() int {
return MACBytesPerSegment
}
// GetCount returns the count of possible distinct values for this item.
// If not representing multiple values, the count is 1,
// unless this is a division grouping with no divisions, or an address section with no segments, in which case it is 0.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (section *MACAddressSection) GetCount() *big.Int {
if section == nil {
return bigZero()
}
return section.cacheCount(func() *big.Int {
return count(func(index int) uint64 {
return section.GetSegment(index).GetValueCount()
}, section.GetSegmentCount(), 6, 0x7fffffffffffff)
})
}
func (section *MACAddressSection) getCachedCount() *big.Int {
if section == nil {
return bigZero()
}
return section.cachedCount(func() *big.Int {
return count(func(index int) uint64 {
return section.GetSegment(index).GetValueCount()
}, section.GetSegmentCount(), 6, 0x7fffffffffffff)
})
}
// GetPrefixCount returns the number of distinct prefix values in this item.
//
// The prefix length is given by GetPrefixLen.
//
// If this has a non-nil prefix length, returns the number of distinct prefix values.
//
// If this has a nil prefix length, returns the same value as GetCount.
func (section *MACAddressSection) GetPrefixCount() *big.Int {
return section.cachePrefixCount(func() *big.Int {
return section.GetPrefixCountLen(section.getPrefixLen().bitCount())
})
}
// GetPrefixCountLen returns the number of distinct prefix values in this item for the given prefix length.
func (section *MACAddressSection) GetPrefixCountLen(prefixLen BitCount) *big.Int {
if prefixLen <= 0 {
return bigOne()
} else if bc := section.GetBitCount(); prefixLen >= bc {
return section.GetCount()
}
networkSegmentIndex := getNetworkSegmentIndex(prefixLen, section.GetBytesPerSegment(), section.GetBitsPerSegment())
hostSegmentIndex := getHostSegmentIndex(prefixLen, section.GetBytesPerSegment(), section.GetBitsPerSegment())
return section.calcCount(func() *big.Int {
return count(func(index int) uint64 {
if (networkSegmentIndex == hostSegmentIndex) && index == networkSegmentIndex {
segmentPrefixLength := getPrefixedSegmentPrefixLength(section.GetBitsPerSegment(), prefixLen, index)
return getPrefixValueCount(section.GetSegment(index).ToSegmentBase(), segmentPrefixLength.bitCount())
}
return section.GetSegment(index).GetValueCount()
}, networkSegmentIndex+1, 6, 0x7fffffffffffff)
})
}
// GetBlockCount returns the count of distinct values in the given number of initial (more significant) segments.
func (section *MACAddressSection) GetBlockCount(segments int) *big.Int {
return section.calcCount(func() *big.Int {
return count(func(index int) uint64 {
return section.GetSegment(index).GetValueCount()
},
segments, 6, 0x7fffffffffffff)
})
}
// SetPrefixLen sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address section.
// The provided prefix length will be adjusted to these boundaries if necessary.
func (section *MACAddressSection) SetPrefixLen(prefixLen BitCount) *MACAddressSection {
return section.setPrefixLen(prefixLen).ToMAC()
}
// AdjustPrefixLen increases or decreases the prefix length by the given increment.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address section.
//
// If this address section has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
func (section *MACAddressSection) AdjustPrefixLen(prefixLen BitCount) *AddressSection {
return section.adjustPrefixLen(prefixLen).ToSectionBase()
}
// AdjustPrefixLenZeroed increases or decreases the prefix length by
// the given increment while zeroing out the bits that have moved into or outside the prefix.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address section.
//
// If this address section has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
//
// When prefix length is increased, the bits moved within the prefix become zero.
// When a prefix length is decreased, the bits moved outside the prefix become zero.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (section *MACAddressSection) AdjustPrefixLenZeroed(prefixLen BitCount) (*AddressSection, address_error.IncompatibleAddressError) {
res, err := section.adjustPrefixLenZeroed(prefixLen)
return res.ToSectionBase(), err
}
// Wrap wraps this address section, returning a WrappedAddressSection,
// an implementation of ExtendedSegmentSeries,
// which can be used to write code that works with both addresses and address sections.
func (section *MACAddressSection) Wrap() WrappedAddressSection {
return wrapSection(section.ToSectionBase())
}
// GetLower returns the section in the range with the lowest numeric value,
// which will be the same section if it represents a single value.
// For example, for "1:1:1:2-3:4:5-6", the series "1:1:1:2:4:5" is returned.
func (section *MACAddressSection) GetLower() *MACAddressSection {
return section.getLower().ToMAC()
}
// GetUpper returns the section in the range with the highest numeric value,
// which will be the same section if it represents a single value.
// For example, for "1:1:1:2-3:4:5-6", the series "1:1:1:3:4:6" is returned.
func (section *MACAddressSection) GetUpper() *MACAddressSection {
return section.getUpper().ToMAC()
}
// Uint64Value returns the lowest individual address section in
// the address section collection as a uint64.
func (section *MACAddressSection) Uint64Value() uint64 {
return section.getLongValue(true)
}
// UpperUint64Value returns the highest individual address section in the address section collection as a uint64.
func (section *MACAddressSection) UpperUint64Value() uint64 {
return section.getLongValue(false)
}
// GetSegmentStrings returns a slice with the string for each segment being the string that is normalized with wildcards.
func (section *MACAddressSection) GetSegmentStrings() []string {
if section == nil {
return nil
}
return section.getSegmentStrings()
}
// Contains returns whether this is same type and version as
// the given address section and whether it contains all values in the given section.
//
// Sections must also have the same number of segments to be comparable,
// otherwise false is returned.
func (section *MACAddressSection) Contains(other AddressSectionType) bool {
if section == nil {
return other == nil || other.ToSectionBase() == nil
}
return section.contains(other)
}
// Equal returns whether the given address section is equal to this address section.
// Two address sections are equal if they represent the same set of sections.
// They must match:
// - type/version: MAC
// - segment counts
// - segment value ranges
//
// Prefix lengths are ignored.
func (section *MACAddressSection) Equal(other AddressSectionType) bool {
if section == nil {
return other == nil || other.ToSectionBase() == nil
}
return section.equal(other)
}
// WithoutPrefixLen provides the same address section but with no prefix length.
// The values remain unchanged.
func (section *MACAddressSection) WithoutPrefixLen() *MACAddressSection {
if !section.IsPrefixed() {
return section
}
return section.withoutPrefixLen().ToMAC()
}
// SetPrefixLenZeroed sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address section.
// The provided prefix length will be adjusted to these boundaries if necessary.
//
// If this address section has a prefix length, and the prefix length is increased when setting the new prefix length, the bits moved within the prefix become zero.
// If this address section has a prefix length, and the prefix length is decreased when setting the new prefix length, the bits moved outside the prefix become zero.
//
// In other words, bits that move from one side of the prefix length to the other (bits moved into the prefix or outside the prefix) are zeroed.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (section *MACAddressSection) SetPrefixLenZeroed(prefixLen BitCount) (*MACAddressSection, address_error.IncompatibleAddressError) {
res, err := section.setPrefixLenZeroed(prefixLen)
return res.ToMAC(), err
}
// AssignMinPrefixForBlock returns an equivalent address section, assigned the smallest prefix length possible,
// such that the prefix block for that prefix length is in this address section.
//
// In other words, this method assigns a prefix length to this address section matching the largest prefix block in this address section.
func (section *MACAddressSection) AssignMinPrefixForBlock() *MACAddressSection {
return section.assignMinPrefixForBlock().ToMAC()
}
// AssignPrefixForSingleBlock returns the equivalent prefix block that matches exactly the range of values in this address section.
// The returned block will have an assigned prefix length indicating the prefix length for the block.
//
// There may be no such address section - it is required that the range of values match the range of a prefix block.
// If there is no such address section, then nil is returned.
func (section *MACAddressSection) AssignPrefixForSingleBlock() *MACAddressSection {
return section.assignPrefixForSingleBlock().ToMAC()
}
// GetSegment returns the segment at the given index.
// The first segment is at index 0.
// GetSegment will panic given a negative index or an index matching or larger than the segment count.
func (section *MACAddressSection) GetSegment(index int) *MACAddressSegment {
return section.getDivision(index).ToMAC()
}
// ForEachSegment visits each segment in order from most-significant to least,
// the most significant with index 0, calling the given function for each,
// terminating early if the function returns true.
// Returns the number of visited segments.
func (section *MACAddressSection) ForEachSegment(consumer func(segmentIndex int, segment *MACAddressSegment) (stop bool)) int {
divArray := section.getDivArray()
if divArray != nil {
for i, div := range divArray {
if consumer(i, div.ToMAC()) {
return i + 1
}
}
}
return len(divArray)
}
// GetTrailingSection gets the subsection from the series starting from the given index.
// The first segment is at index 0.
func (section *MACAddressSection) GetTrailingSection(index int) *MACAddressSection {
return section.GetSubSection(index, section.GetSegmentCount())
}
// GetSubSection gets the subsection from the series starting from the given index and ending just before the give endIndex.
// The first segment is at index 0.
func (section *MACAddressSection) GetSubSection(index, endIndex int) *MACAddressSection {
return section.getSubSection(index, endIndex).ToMAC()
}
// CopySubSegments copies the existing segments from the given start index until but not including the segment at the given end index,
// into the given slice, as much as can be fit into the slice, returning the number of segments copied.
func (section *MACAddressSection) CopySubSegments(start, end int, segs []*MACAddressSegment) (count int) {
start, end, targetStart := adjust1To1StartIndices(start, end, section.GetDivisionCount(), len(segs))
segs = segs[targetStart:]
return section.forEachSubDivision(start, end, func(index int, div *AddressDivision) {
segs[index] = div.ToMAC()
}, len(segs))
}
// Iterator provides an iterator to iterate through the individual address sections of this address section.
//
// When iterating, the prefix length is preserved.
// Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual address sections.
//
// Call IsMultiple to determine if this instance represents multiple address sections, or GetCount for the count.
func (section *MACAddressSection) Iterator() Iterator[*MACAddressSection] {
if section == nil {
return macSectionIterator{nilSectIterator()}
}
return macSectionIterator{section.sectionIterator(nil)}
}
// ReverseBytes returns a new section with the bytes reversed. Any prefix length is dropped.
func (section *MACAddressSection) ReverseBytes() *MACAddressSection {
return section.ReverseSegments()
}
// ReverseSegments returns a new section with the segments reversed.
func (section *MACAddressSection) ReverseSegments() *MACAddressSection {
if section.GetSegmentCount() <= 1 {
if section.IsPrefixed() {
return section.WithoutPrefixLen()
}
return section
}
res, _ := section.reverseSegments(
func(i int) (*AddressSegment, address_error.IncompatibleAddressError) {
return section.GetSegment(i).ToSegmentBase(), nil
},
)
return res.ToMAC()
}
// ReplaceLen replaces segments starting from startIndex and ending before endIndex with the segments starting at replacementStartIndex and
// ending before replacementEndIndex from the replacement section.
func (section *MACAddressSection) ReplaceLen(startIndex, endIndex int, replacement *MACAddressSection, replacementStartIndex, replacementEndIndex int) *MACAddressSection {
return section.replaceLen(startIndex, endIndex, replacement.ToSectionBase(), replacementStartIndex, replacementEndIndex, macBitsToSegmentBitshift).ToMAC()
}
// Append creates a new section by appending the given section to this section.
func (section *MACAddressSection) Append(other *MACAddressSection) *MACAddressSection {
count := section.GetSegmentCount()
return section.ReplaceLen(count, count, other, 0, other.GetSegmentCount())
}
// Insert creates a new section by inserting the given section into this section at the given index.
func (section *MACAddressSection) Insert(index int, other *MACAddressSection) *MACAddressSection {
return section.ReplaceLen(index, index, other, 0, other.GetSegmentCount())
}
// Replace replaces the segments of this section starting at the given index with the given replacement segments.
func (section *MACAddressSection) Replace(index int, replacement *MACAddressSection) *MACAddressSection {
return section.ReplaceLen(index, index+replacement.GetSegmentCount(), replacement, 0, replacement.GetSegmentCount())
}
// CopySegments copies the existing segments into the given slice,
// as much as can be fit into the slice, returning the number of segments copied.
func (section *MACAddressSection) CopySegments(segs []*MACAddressSegment) (count int) {
return section.ForEachSegment(func(index int, seg *MACAddressSegment) (stop bool) {
if stop = index >= len(segs); !stop {
segs[index] = seg
}
return
})
}
// GetSegments returns a slice with the address segments.
// The returned slice is not backed by the same array as this section.
func (section *MACAddressSection) GetSegments() (res []*MACAddressSegment) {
res = make([]*MACAddressSegment, section.GetSegmentCount())
section.CopySegments(res)
return
}
// GetDottedGrouping returns an AddressDivisionGrouping which organizes the address section into segments of bit-length 16, rather than the more typical 8 bits per segment.
//
// If this represents a collection of MAC addresses, this returns an error when unable to join two address segments,
// the first with a range of values, into a division of the larger bit-length that represents the same set of values.
func (section *MACAddressSection) GetDottedGrouping() (*AddressDivisionGrouping, address_error.IncompatibleAddressError) {
var segIndex, newSegIndex int
var newSegs []*AddressDivision
segmentCount := section.GetSegmentCount()
bitsPerSeg := section.GetBitsPerSegment()
newSegmentCount := (segmentCount + 1) >> 1
newSegmentBitCount := section.GetBitsPerSegment() << 1
newSegs = make([]*AddressDivision, newSegmentCount)
for segIndex+1 < segmentCount {
segment1 := section.GetSegment(segIndex)
segIndex++
segment2 := section.GetSegment(segIndex)
segIndex++
if segment1.isMultiple() && !segment2.IsFullRange() {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.invalid.joined.ranges"}}
}
val := (segment1.GetSegmentValue() << uint(bitsPerSeg)) | segment2.GetSegmentValue()
upperVal := (segment1.GetUpperSegmentValue() << uint(bitsPerSeg)) | segment2.GetUpperSegmentValue()
vals := newRangeDivision(DivInt(val), DivInt(upperVal), newSegmentBitCount)
newSegs[newSegIndex] = createAddressDivision(vals)
newSegIndex++
}
if segIndex < segmentCount {
segment := section.GetSegment(segIndex)
val := segment.GetSegmentValue() << uint(bitsPerSeg)
upperVal := segment.GetUpperSegmentValue() << uint(bitsPerSeg)
vals := newRangeDivision(DivInt(val), DivInt(upperVal), newSegmentBitCount)
newSegs[newSegIndex] = createAddressDivision(vals)
}
grouping := createInitializedGrouping(newSegs, section.getPrefixLen())
return grouping, nil
}
// ReverseBits returns a new section with the bits reversed. Any prefix length is dropped.
//
// If the bits within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, this returns an error.
//
// In practice this means that to be reversible,
// a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (section *MACAddressSection) ReverseBits(perByte bool) (*MACAddressSection, address_error.IncompatibleAddressError) {
res, err := section.reverseBits(perByte)
return res.ToMAC(), err
}
// Increment returns the item that is the given increment upwards into the range,
// with the increment of 0 returning the first in the range.
//
// If the increment i matches or exceeds the range count c, then i - c + 1
// is added to the upper item of the range.
// An increment matching the count gives you the item just above the highest in the range.
//
// If the increment is negative, it is added to the lowest of the range.
// To get the item just below the lowest of the range, use the increment -1.
//
// If this represents just a single value, the item is simply incremented by the given increment, positive or negative.
//
// If this item represents multiple values, a positive increment i is equivalent i + 1 values from the iterator and beyond.
// For instance, a increment of 0 is the first value from the iterator, an increment of 1 is the second value from the iterator, and so on.
// An increment of a negative value added to the count is equivalent to the same number of iterator values preceding the last value of the iterator.
// For instance, an increment of count - 1 is the last value from the iterator, an increment of count - 2 is the second last value, and so on.
//
// On overflow or underflow, Increment returns nil.
func (section *MACAddressSection) Increment(incrementVal int64) *MACAddressSection {
if incrementVal == 0 && !section.isMultiple() {
return section
}
count := section.GetCount()
lowerValue := section.Uint64Value()
segCount := section.GetSegmentCount()
upperValue := section.UpperUint64Value()
countMinus1 := count.Sub(count, bigOneConst()).Uint64()
if checkOverflow(incrementVal, lowerValue, upperValue, countMinus1, getMacMaxValueLong(segCount)) {
return nil
}
return increment(
section.ToSectionBase(),
incrementVal,
macNetwork.getAddressCreator(),
countMinus1,
section.Uint64Value(),
section.UpperUint64Value(),
section.addressSectionInternal.getLower,
section.addressSectionInternal.getUpper,
section.getPrefixLen()).ToMAC()
}
// Compare returns a negative integer, zero,
// or a positive integer if this address section is less than, equal,
// or greater than the given item.
// Any address item is comparable to any other.
// All address items use CountComparator to compare.
func (section *MACAddressSection) Compare(item AddressItem) int {
return CountComparator.Compare(section, item)
}
// CompareSize compares the counts of two items,
// the number of individual items represented.
//
// Rather than calculating counts with GetCount,
// there can be more efficient ways of determining whether this section represents more individual address sections than another.
//
// CompareSize returns a positive integer if this address section has a larger count than the one given, zero if they are the same,
// or a negative integer if the other has a larger count.
func (section *MACAddressSection) CompareSize(other AddressItem) int {
if section == nil {
if isNilItem(other) {
return 0
}
// have size 0, other has size >= 1
return -1
}
return section.compareSize(other)
}
// PrefixIterator provides an iterator to iterate through the individual prefixes of this address section,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator,
// except for possibly the first and last iterated elements,
// which might not be prefix blocks,
// instead constraining themselves to values from this address section.
//
// If the series has no prefix length, then this is equivalent to Iterator.
func (section *MACAddressSection) PrefixIterator() Iterator[*MACAddressSection] {
return macSectionIterator{section.prefixIterator(false)}
}
// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks,
// one for each prefix of this address section.
// Each iterated address section will be a prefix block with the same prefix length as this address section.
//
// If this address section has no prefix length,
// then this is equivalent to Iterator.
func (section *MACAddressSection) PrefixBlockIterator() Iterator[*MACAddressSection] {
return macSectionIterator{section.prefixIterator(true)}
}
// IncrementBoundary returns the item that is the given increment from the range boundaries of this item.
//
// If the given increment is positive, adds the value to the highest (GetUpper) in the range to produce a new item.
// If the given increment is negative, adds the value to the lowest (GetLower) in the range to produce a new item.
// If the increment is zero, returns this.
//
// If this represents just a single value, this item is simply incremented by the given increment value, positive or negative.
//
// On overflow or underflow, IncrementBoundary returns nil.
func (section *MACAddressSection) IncrementBoundary(increment int64) *MACAddressSection {
return section.incrementBoundary(increment).ToMAC()
}
// ToHexString writes this address section as a single hexadecimal value (possibly two values if a range),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// If a multiple-valued section cannot be written as a range of two values, an error is returned.
func (section *MACAddressSection) ToHexString(with0xPrefix bool) (string, address_error.IncompatibleAddressError) {
if section == nil {
return nilString(), nil
}
return section.toHexString(with0xPrefix)
}
// ToOctalString writes this address section as a single octal value (possibly two values if a range),
// the number of digits according to the bit count, with or without a preceding "0" prefix.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *MACAddressSection) ToOctalString(with0Prefix bool) (string, address_error.IncompatibleAddressError) {
if section == nil {
return nilString(), nil
}
return section.toOctalString(with0Prefix)
}
// ToBinaryString writes this address section as a single binary value (possibly two values if a range),
// the number of digits according to the bit count, with or without a preceding "0b" prefix.
//
// If a multiple-valued section cannot be written as a range of two values, an error is returned.
func (section *MACAddressSection) ToBinaryString(with0bPrefix bool) (string, address_error.IncompatibleAddressError) {
if section == nil {
return nilString(), nil
}
return section.toBinaryString(with0bPrefix)
}
// ToCanonicalString produces a canonical string for the address section.
//
// For MAC, it uses the canonical standardized IEEE 802 MAC address representation of xx-xx-xx-xx-xx-xx.
// An example is "01-23-45-67-89-ab".
// For range segments, '|' is used: "11-22-33|44-55-66".
func (section *MACAddressSection) ToCanonicalString() string {
if section == nil {
return nilString()
}
cache := section.getStringCache()
if cache == nil {
return section.toCustomString(macCanonicalParams)
}
return cacheStr(&cache.canonicalString,
func() string {
return section.toCustomString(macCanonicalParams)
})
}
// ToNormalizedString produces a normalized string for the address section.
//
// For MAC, it differs from the canonical string.
// It uses the most common representation of MAC addresses: "xx:xx:xx:xx:xx:xx".
// An example is "01:23:45:67:89:ab".
// For range segments, '-' is used: "11:22:33-44:55:66".
func (section *MACAddressSection) ToNormalizedString() string {
if section == nil {
return nilString()
}
cch := section.getStringCache()
if cch == nil {
return section.toCustomString(macNormalizedParams)
}
strp := &cch.normalizedMACString
return cacheStr(strp,
func() string {
return section.toCustomString(macNormalizedParams)
})
}
// ToCompressedString produces a short representation of
// this address section while remaining within the confines of standard representation(s) of the address.
//
// For MAC, it differs from the canonical string.
// It produces a shorter string for the address that has no leading zeros.
func (section *MACAddressSection) ToCompressedString() string {
if section == nil {
return nilString()
}
cache := section.getStringCache()
if cache == nil {
return section.toCustomString(macCompressedParams)
}
return cacheStr(&cache.compressedMACString,
func() string {
return section.toCustomString(macCompressedParams)
})
}
// ToDottedString produces the dotted hexadecimal format "aaaa.bbbb.cccc".
func (section *MACAddressSection) ToDottedString() (string, address_error.IncompatibleAddressError) {
if section == nil {
return nilString(), nil
}
dottedGrouping, err := section.GetDottedGrouping()
if err != nil {
return "", err
}
cache := section.getStringCache()
if cache == nil {
return toNormalizedString(dottedParams, dottedGrouping), nil
}
return cacheStrErr(&cache.dottedString,
func() (string, address_error.IncompatibleAddressError) {
return toNormalizedString(dottedParams, dottedGrouping), nil
})
}
// ToSpaceDelimitedString produces a string delimited by spaces: "aa bb cc dd ee ff".
func (section *MACAddressSection) ToSpaceDelimitedString() string {
if section == nil {
return nilString()
}
cache := section.getStringCache()
if cache == nil {
return section.toCustomString(spaceDelimitedParams)
}
return cacheStr(&cache.spaceDelimitedString,
func() string {
return section.toCustomString(spaceDelimitedParams)
})
}
// ToDashedString produces a string delimited by dashes: "aa-bb-cc-dd-ee-ff".
// For range segments, '|' is used: "11-22-33|44-55-66".
// It returns the same string as ToCanonicalString.
func (section *MACAddressSection) ToDashedString() string {
if section == nil {
return nilString()
}
return section.ToCanonicalString()
}
// ToColonDelimitedString produces a string delimited by colons: "aa:bb:cc:dd:ee:ff".
// For range segments, '-' is used: "11:22:33-44:55:66".
// It returns the same string as ToNormalizedString.
func (section *MACAddressSection) ToColonDelimitedString() string {
if section == nil {
return nilString()
}
return section.ToNormalizedString()
}
// ToNormalizedWildcardString produces the normalized string.
func (section *MACAddressSection) ToNormalizedWildcardString() string {
return section.ToNormalizedString()
}
// String implements the [fmt.Stringer] interface, returning the normalized string provided by ToNormalizedString, or "<nil>" if the receiver is a nil pointer.
func (section *MACAddressSection) String() string {
if section == nil {
return nilString()
}
return section.toString()
}
func createMACSection(segments []*AddressDivision) *MACAddressSection {
return &MACAddressSection{
addressSectionInternal{
addressDivisionGroupingInternal{
addressDivisionGroupingBase: addressDivisionGroupingBase{
divisions: standardDivArray(segments),
addrType: macType,
cache: &valueCache{
stringCache: stringCache{
macStringCache: &macStringCache{},
},
},
},
},
},
}
}
func newMACSectionParsed(segments []*AddressDivision, isMultiple bool) (res *MACAddressSection) {
res = createMACSection(segments)
res.initImplicitPrefLen(MACBitsPerSegment)
res.isMult = isMultiple
return
}
func createMACSectionFromSegs(orig []*MACAddressSegment) *MACAddressSection {
var newPref PrefixLen
segCount := len(orig)
newSegs := make([]*AddressDivision, segCount)
isMultiple := false
if segCount != 0 {
isBlock := true
for i := segCount - 1; i >= 0; i-- {
segment := orig[i]
if segment == nil {
segment = zeroMACSeg
if isBlock && i != segCount-1 {
newPref = getNetworkPrefixLen(MACBitsPerSegment, MACBitsPerSegment, i)
isBlock = false
}
} else {
if isBlock {
minPref := segment.GetMinPrefixLenForBlock()
if minPref > 0 {
if minPref != MACBitsPerSegment || i != segCount-1 {
newPref = getNetworkPrefixLen(MACBitsPerSegment, minPref, i)
}
isBlock = false
}
}
isMultiple = isMultiple || segment.isMultiple()
}
newSegs[i] = segment.ToDiv()
}
if isBlock {
newPref = cacheBitCount(0)
}
}
res := createMACSection(newSegs)
res.isMult = isMultiple
res.prefixLength = newPref
return res
}
// NewMACSection constructs a MAC address or address collection section from the given segments.
func NewMACSection(segments []*MACAddressSegment) *MACAddressSection {
return createMACSectionFromSegs(segments)
}
func getMacMaxValueLong(segmentCount int) uint64 {
return macMaxValues[segmentCount]
}
func newMACSectionEUI(segments []*AddressDivision) (res *MACAddressSection) {
res = createMACSection(segments)
res.initMultAndImplicitPrefLen(MACBitsPerSegment)
return
}
// NewMACSectionFromBytes constructs a MAC address section from the given byte slice.
// The segment count is determined by the slice length, even if the segment count exceeds 8 segments.
func NewMACSectionFromBytes(bytes []byte, segmentCount int) (res *MACAddressSection, err address_error.AddressValueError) {
if segmentCount < 0 {
segmentCount = len(bytes)
}
expectedByteCount := segmentCount
segments, err := toSegments(
bytes,
segmentCount,
MACBytesPerSegment,
MACBitsPerSegment,
macNetwork.getAddressCreator(),
nil)
if err == nil {
// note prefix len is nil
res = createMACSection(segments)
if expectedByteCount == len(bytes) {
bytes = cloneBytes(bytes)
res.cache.bytesCache = &bytesCache{lowerBytes: bytes}
if !res.isMult { // not a prefix block
res.cache.bytesCache.upperBytes = bytes
}
}
}
return
}
// NewMACSectionFromUint64 constructs a MAC address section of the given segment count from the given value.
// The least significant bits of the given value will be used.
func NewMACSectionFromUint64(val uint64, segmentCount int) (res *MACAddressSection) {
if segmentCount < 0 {
segmentCount = MediaAccessControlSegmentCount
}
segments := createSegmentsUint64(
segmentCount,
0,
val,
MACBytesPerSegment,
MACBitsPerSegment,
macNetwork.getAddressCreator(),
nil)
// note prefix len is nil
res = createMACSection(segments)
return
}
// NewMACSectionFromVals constructs a MAC address section of the given segment count from the given values.
func NewMACSectionFromVals(vals MACSegmentValueProvider, segmentCount int) (res *MACAddressSection) {
res = NewMACSectionFromRange(vals, nil, segmentCount)
return
}
// NewMACSectionFromRange constructs a MAC address collection section of the given segment count from the given values.
func NewMACSectionFromRange(vals, upperVals MACSegmentValueProvider, segmentCount int) (res *MACAddressSection) {
if segmentCount < 0 {
segmentCount = 0
}
segments, isMultiple := createSegments(
WrapMACSegmentValueProvider(vals),
WrapMACSegmentValueProvider(upperVals),
segmentCount,
MACBitsPerSegment,
macNetwork.getAddressCreator(),
nil)
res = createMACSection(segments)
if isMultiple {
res.initImplicitPrefLen(MACBitsPerSegment)
res.isMult = true
}
return
}