-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathPGTSP50_100.py
570 lines (480 loc) · 20.9 KB
/
PGTSP50_100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import argparse
import uuid
import os
import torch
import json
import numpy as np
import torch.backends.cudnn as cudnn
from utils import AverageMeter
from torch.optim import Adam, lr_scheduler, RMSprop
from torch.utils.data import DataLoader
from ActorCriticNetwork import ActorCriticNetwork
from DataGenerator import TSPDataset
from TSPEnvironment import TSPInstanceEnv, VecEnv
from torch.utils.tensorboard import SummaryWriter
from apex import amp
parser = argparse.ArgumentParser()
# ----------------------------------- Data ---------------------------------- #
parser.add_argument('--train_size',
default=5120, type=int, help='Training data size')
parser.add_argument('--test_size',
default=256, type=int, help='Test data size')
parser.add_argument('--test_from_data',
default=True, action='store_true', help='Test data size')
parser.add_argument('--batch_size',
default=512, type=int, help='Batch size')
parser.add_argument('--n_points',
type=int, default=50, help='Number of points in the TSP')
# ---------------------------------- Train ---------------------------------- #
parser.add_argument('--n_steps',
default=200,
type=int, help='Number of steps in each episode')
parser.add_argument('--n',
default=8,
type=int, help='Number of steps to bootstrap')
parser.add_argument('--gamma',
default=0.99,
type=float, help='Discount factor for rewards')
parser.add_argument('--render',
default=False,
action='store_true', help='Render')
parser.add_argument('--render_from_epoch',
default=0,
type=int, help='Epoch to start rendering')
parser.add_argument('--update_value',
default=False,
action='store_true',
help='Use the value function for TD updates')
parser.add_argument('--epochs',
default=300, type=int, help='Number of epochs')
parser.add_argument('--lr',
type=float, default=0.001, help='Learning rate')
parser.add_argument('--wd',
default=1e-5,
type=float, help='Weight decay')
parser.add_argument('--beta',
type=float, default=0.005, help='Entropy loss weight')
parser.add_argument('--zeta',
type=float, default=0.5, help='Value loss weight')
parser.add_argument('--max_grad_norm',
type=float, default=0.3, help='Maximum gradient norm')
parser.add_argument('--no_norm_return',
default=False,
action='store_true', help='Disable normalised returns')
parser.add_argument('--log-interval', type=int, default=1, metavar='N',
help='interval between training status logs (default: 1)')
parser.add_argument('--rms_prop',
default=False,
action='store_true', help='Disable normalised returns')
parser.add_argument('--adam_beta1',
type=float, default=0.9, help='ADAM beta 1')
parser.add_argument('--adam_beta2',
type=float, default=0.999, help='ADAM beta 2')
# ----------------------------------- GPU ----------------------------------- #
parser.add_argument('--gpu',
default=True, action='store_true', help='Enable gpu')
parser.add_argument('--gpu_n',
default=1, type=int, help='Choose GPU')
# --------------------------------- Network --------------------------------- #
parser.add_argument('--input_dim',
type=int, default=2, help='Input size')
parser.add_argument('--embedding_dim',
type=int, default=128, help='Embedding size')
parser.add_argument('--hidden_dim',
type=int, default=128, help='Number of hidden units')
parser.add_argument('--n_rnn_layers',
type=int, default=1, help='Number of LSTM layers')
parser.add_argument('--n_actions',
type=int, default=2, help='Number of nodes to output')
parser.add_argument('--graph_ref',
default=False,
action='store_true',
help='Use message passing as reference')
# ----------------------------------- Misc ---------------------------------- #
parser.add_argument("--name", type=str, default="", help="Name of the run")
parser.add_argument('--load_path', type=str, default='')
parser.add_argument('--log_dir', type=str, default='logs')
parser.add_argument('--data_dir', type=str, default='data')
parser.add_argument('--model_dir', type=str, default='models')
# unique id in case of no name given
uid = uuid.uuid4()
id = uid.hex
# create {} to log stuff
log = {}
log['hyperparameters'] = {}
args = parser.parse_args()
# log hyperparameters
for arg in vars(args):
log['hyperparameters'][arg] = getattr(args, arg)
# give it a clever name :D
if args.name != '':
id = args.name
print("Name:", str(id))
# select a gpu to use
if args.gpu and torch.cuda.is_available():
USE_CUDA = True
print('Using GPU, {} devices available.'.format(torch.cuda.device_count()))
torch.cuda.set_device(args.gpu_n)
print("GPU: %s" % torch.cuda.get_device_name(torch.cuda.current_device()))
device = torch.device("cuda")
else:
USE_CUDA = False
device = torch.device("cpu")
# if loading the model from file add it here
if args.load_path != '':
print(' [*] Loading model from {}'.format(args.load_path))
policy = torch.load(
os.path.join(os.getcwd(), args.load_path))
else:
# create actor-critic network
policy = ActorCriticNetwork(args.input_dim,
args.embedding_dim,
args.hidden_dim,
args.n_points,
args.n_rnn_layers,
args.n_actions,
args.graph_ref)
# define the optimizer and scheduler
if args.rms_prop:
optimizer = RMSprop(policy.parameters(), lr=args.lr, weight_decay=args.wd)
else:
optimizer = Adam(policy.parameters(),
lr=args.lr,
weight_decay=args.wd,
betas=(args.adam_beta1, args.adam_beta2))
scheduler = lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.98)
# Move policy to the GPU - Use more than one GPU if available
if USE_CUDA:
policy.cuda()
# policy = torch.nn.DataParallel(policy,
# device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
# Initialization
opt_level = 'O1'
policy, optimizer = amp.initialize(policy, optimizer, opt_level=opt_level)
if args.test_from_data:
test_data = TSPDataset(dataset_fname=os.path.join(args.data_dir,
'TSP{}-data.json'
.format(args.n_points)),
num_samples=args.test_size)
else:
test_data = TSPDataset(dataset_fname=None,
size=args.n_points,
num_samples=args.test_size)
# load the test data
test_loader = DataLoader(test_data,
batch_size=args.test_size,
shuffle=False,
num_workers=6)
# buffer to store experiences
class buffer:
def __init__(self):
# action & reward buffer
self.actions = []
self.states = []
self.log_probs = []
self.rewards = []
self.values = []
self.entropies = []
def clear_buffer(self):
del self.actions[:]
del self.states[:]
del self.log_probs[:]
del self.rewards[:]
del self.values[:]
del self.entropies[:]
def select_action(state, hidden, buffer, best_state):
probs, action, log_probs_action, v, entropy, hidden = policy(state,
best_state,
hidden)
buffer.log_probs.append(log_probs_action)
buffer.states.append(state)
buffer.actions.append(action)
buffer.values.append(v)
buffer.entropies.append(entropy)
return action, v, hidden
def learn(R, t_s, beta, zeta, count_learn, epoch):
"""
Training. Calcultes actor and critic losses and performs backprop.
"""
count_steps = 0
sum_returns = 0.0
sum_advantage = 0.0
sum_loss_actor = 0.0
sum_loss_critic = 0.0
sum_entropy = 0.0
sum_loss_total = 0.0
sum_grads_l2 = 0.0
sum_grads_max = 0.0
sum_grads_var = 0.0
# Starting sum of losses for logging
if t_s == 0:
epoch_train_policy_loss.reset()
epoch_train_entropy_loss.reset()
epoch_train_value_loss.reset()
epoch_train_loss.reset()
# Returns
if R is None:
R = torch.zeros((args.batch_size, 1)).to(device)
returns = [] # returns for each state discounted
for s in reversed(range(len(buffer.rewards))):
R = buffer.rewards[s] + args.gamma * R
returns.insert(0, R)
returns = torch.stack(returns).detach()
if not args.no_norm_return:
r_mean = returns.mean()
r_std = returns.std()
eps = np.finfo(np.float32).eps.item() # small number to avoid div/0
returns = (returns - r_mean)/(r_std + eps)
# num of experiences in this "batch" of experiences
n_experiences = args.batch_size*args.n
# transform lists to tensor
values = torch.stack(buffer.values)
log_probs = torch.stack(buffer.log_probs).mean(2).unsqueeze(2)
entropies = torch.stack(buffer.entropies).mean(2).unsqueeze(2)
advantages = returns - values
p_loss = (-log_probs*advantages.detach()).mean()
v_loss = zeta*(returns - values).pow(2).mean()
e_loss = (0.9**(epoch+1))*beta*entropies.sum(0).mean()
optimizer.zero_grad()
with amp.scale_loss(p_loss, optimizer) as scaled_p_loss:
scaled_p_loss.backward(retain_graph=True)
# p_loss.backward(retain_graph=True)
grads = np.concatenate([p.grad.data.cpu().numpy().flatten()
for p in policy.parameters()
if p.grad is not None])
r_loss = - e_loss + v_loss
with amp.scale_loss(r_loss, optimizer) as scaled_r_loss:
scaled_r_loss.backward()
# r_loss.backward()
# nn.utils.clip_grad_norm_(policy.parameters(), args.max_grad_norm)
optimizer.step()
loss = p_loss + r_loss
# track statistics
sum_returns += returns.mean()
sum_advantage += advantages.mean()
sum_loss_actor += p_loss
sum_loss_critic += v_loss
sum_loss_total += loss
sum_entropy += e_loss
sum_grads_l2 += np.sqrt(np.mean(np.square(grads)))
sum_grads_max += np.max(np.abs(grads))
sum_grads_var += np.var(grads)
count_steps += 1
writer.add_scalar("Returns", sum_returns/count_steps, count_learn)
writer.add_scalar("Advantage", sum_advantage/count_steps, count_learn)
writer.add_scalar("Loss_Actor", sum_loss_actor/count_steps, count_learn)
writer.add_scalar("Loss_Critic", sum_loss_critic/count_steps, count_learn)
writer.add_scalar("Loss_Entropy", sum_entropy/count_steps, count_learn)
writer.add_scalar("Loss_Total", sum_loss_total/count_steps, count_learn)
writer.add_scalar("Gradients_L2", sum_grads_l2/count_steps, count_learn)
writer.add_scalar("Gradients_Max", sum_grads_max/count_steps, count_learn)
writer.add_scalar("Gradients_Var", sum_grads_var/count_steps, count_learn)
epoch_train_policy_loss.update(p_loss.item(), n_experiences)
epoch_train_entropy_loss.update(e_loss.item()/args.n, n_experiences)
epoch_train_value_loss.update(v_loss.item(), n_experiences)
epoch_train_loss.update(loss.item(), n_experiences)
buffer.clear_buffer()
# Initiate the buffer
buffer = buffer()
# Initiate the logs
epoch_train_policy_loss = AverageMeter()
train_policy_loss_log = AverageMeter('train_policy_loss')
epoch_train_entropy_loss = AverageMeter()
train_entropy_loss_log = AverageMeter('train_entropy_loss')
epoch_train_value_loss = AverageMeter()
train_value_loss_log = AverageMeter('train_value_loss')
epoch_train_loss = AverageMeter()
train_loss_log = AverageMeter('train_loss')
train_rwd_log = AverageMeter('train_reward')
train_init_dist_log = AverageMeter('train_init_dist')
train_best_dist_log = AverageMeter('train_best_dist')
val_rwd_log = AverageMeter('val_reward')
val_init_dist_log = AverageMeter('val_init_dist')
val_best_dist_log = AverageMeter('val_best_dist')
best_running_reward = 0
val_best_dist = 1e10
best_gap = 1e10
count_learn = 0
writer = SummaryWriter(comment="-pg_" + args.name)
for epoch in range(args.epochs):
# training
train_data = TSPDataset(dataset_fname=None,
size=args.n_points,
num_samples=args.train_size)
train_loader = DataLoader(train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=6)
# save metrics for all batches
epoch_rewards = []
epoch_initial_distances = []
epoch_best_distances = []
if args.n_points == 50:
if epoch == 100:
args.n = 10
if epoch == 200:
args.n = 20
if args.n_points == 100:
if epoch == 100:
args.n = 8
if epoch == 200:
args.n = 10
for batch_idx, batch_sample in enumerate(train_loader):
t = 0
b_sample = batch_sample.clone().detach().numpy()
batch_reward = 0
# every batch defines a set of agents running the same policy
env = VecEnv(TSPInstanceEnv, b_sample.shape[0], args.n_points)
state, initial_distance, best_state = env.reset(b_sample)
hidden = None
while t < args.n_steps:
t_s = t
while t - t_s < args.n and t != args.n_steps:
if args.render and epoch > args.render_from_epoch:
env.render()
state = torch.from_numpy(state).float().to(device)
best_state = torch.from_numpy(best_state).float().to(device)
action, v, _ = select_action(state,
hidden,
buffer,
best_state)
next_state, reward, _, best_distance, _, next_best_state = \
env.step(action.cpu().numpy())
buffer.rewards.append(torch.from_numpy(reward).float().to(device))
batch_reward += reward
state = next_state
best_state = next_best_state
t += 1
if args.update_value:
next_state = torch.from_numpy(next_state).float().to(device)
next_best_state = torch.from_numpy(best_state).float().to(device)
_, _, _, next_v, _, _ = policy(next_state, next_best_state, hidden)
R = next_v
else:
R = None
count_learn += 1
learn(R, t_s, args.beta, args.zeta, count_learn, epoch)
epoch_rewards.append(batch_reward)
epoch_best_distances.append(best_distance)
epoch_initial_distances.append(initial_distance)
epoch_reward = np.mean(epoch_rewards)
epoch_initial_distance = np.mean(epoch_initial_distances)
epoch_best_distance = np.mean(epoch_best_distances)
train_policy_loss_log.update(epoch_train_policy_loss.avg)
train_entropy_loss_log.update(epoch_train_entropy_loss.avg)
train_value_loss_log.update(epoch_train_value_loss.avg)
train_loss_log.update(epoch_train_loss.avg)
train_rwd_log.update(epoch_reward)
train_init_dist_log.update(epoch_initial_distance)
train_best_dist_log.update(epoch_best_distance)
# validation
val_epoch_rewards = []
val_epoch_best_distances = []
val_epoch_initial_distances = []
sum_probs = 0
for val_batch_idx, val_batch_sample in enumerate(test_loader):
val_b_sample = val_batch_sample.clone().detach().numpy()
val_batch_reward = 0
env = VecEnv(TSPInstanceEnv, val_b_sample.shape[0], args.n_points)
state, initial_distance, best_state = env.reset(val_b_sample)
t = 0
hidden = None
while t < args.n_steps:
state = torch.from_numpy(state).float().to(device)
best_state = torch.from_numpy(best_state).float().to(device)
with torch.no_grad():
probs, action, _, _, _, _ = policy(state, best_state, hidden)
sum_probs += probs
action = action.cpu().numpy()
state, reward, _, best_distance, distance, best_state = env.step(action)
val_batch_reward += reward
t += 1
val_epoch_rewards.append(val_batch_reward)
val_epoch_best_distances.append(best_distance)
val_epoch_initial_distances.append(initial_distance)
avg_probs = torch.sum(sum_probs, dim=0)/(args.n_steps*args.test_size)*100
avg_probs = avg_probs.cpu().numpy().round(2)
val_epoch_reward = np.mean(val_epoch_rewards)
val_epoch_best_distance = np.mean(val_epoch_best_distances)
val_epoch_initial_distance = np.mean(val_epoch_initial_distances)
val_rwd_log.update(val_epoch_reward)
val_init_dist_log.update(val_epoch_initial_distance)
val_best_dist_log.update(val_epoch_best_distance)
scheduler.step()
writer.add_scalar("Rewards_Training",
epoch_reward,
epoch)
writer.add_scalar("Rewards_Testing",
val_epoch_reward,
epoch)
writer.add_scalar("Tour_Cost_Training",
train_best_dist_log.val/10000,
epoch)
writer.add_scalar("Tour_Cost_Testing",
val_best_dist_log.val/10000,
epoch)
if args.test_from_data:
gap = ((val_best_dist_log.val/10000)/np.mean(test_data.opt) - 1.0)*100
writer.add_scalar("Gap_Testing",
gap,
epoch)
if val_rwd_log.exp_avg > best_running_reward \
or val_best_dist_log.val < val_best_dist\
or (args.test_from_data and gap < best_gap):
print('\033[1;37;40m Saving model...\033[0m')
model_dir = os.path.join(args.model_dir, str(id))
if not os.path.exists(model_dir):
os.mkdir(model_dir)
checkpoint = {
'policy': policy.state_dict(),
'optimizer': optimizer.state_dict(),
'amp': amp.state_dict()
}
torch.save(checkpoint, os.path.join(model_dir,
'pg-{}-TSP{}-epoch-{}.pt'
.format(str(id), args.n_points,
epoch)))
torch.save(policy, os.path.join(model_dir,
'full-model-pg-{}-TSP{}-epoch-{}.pt'
.format(str(id), args.n_points,
epoch)))
best_running_reward = val_rwd_log.exp_avg
val_best_dist = val_best_dist_log.val
best_gap = gap
if epoch % args.log_interval == 0:
train_rwd_log.log(log)
train_init_dist_log.log(log)
train_best_dist_log.log(log)
train_policy_loss_log.log(log)
train_entropy_loss_log.log(log)
train_value_loss_log.log(log)
train_loss_log.log(log)
val_rwd_log.log(log)
val_init_dist_log.log(log)
val_best_dist_log.log(log)
print('\033[1;32;40m Train - epoch:{} |rwd: {:.2f}'
.format(epoch, train_rwd_log.val),
'|running rwd: {:.2f} |best cost: {:.3f}\033[0m'
.format(train_rwd_log.exp_avg, train_best_dist_log.val/10000))
if not args.test_from_data:
print('\033[1;33;40m Valid - epoch:{} |rwd: {:.2f}'
.format(epoch, val_rwd_log.val),
'|running rwd: {:.2f} |best cost: {:.2f}\033[0m'
.format(val_rwd_log.exp_avg, val_best_dist_log.val/10000))
else:
print('\033[1;33;40m Valid - epoch:{} |rwd: {:.2f}'
.format(epoch, val_rwd_log.val),
'|running rwd: {:.2f} |best cost: {:.3f}'
.format(val_rwd_log.exp_avg, val_best_dist_log.val/10000),
'|optimal cost: {:.3f} |gap {:.3f}\033[0m'
.format(np.mean(test_data.opt), gap))
# print("\033[1;37;40m Probabilities: \n",
# np.array2string(avg_probs,
# precision=1, separator=' ',
# suppress_small=True), "\033[0m")
with open(os.path.join(args.log_dir,
'pg-{}-TSP{}.json'
.format(str(id),
args.n_points)), 'w') as outfile:
json.dump(log, outfile, indent=4)