-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFL_data_analyzing.html
798 lines (692 loc) · 33 KB
/
FL_data_analyzing.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Florida Data Analysis</title>
<script src="site_libs/header-attrs-2.11/header-attrs.js"></script>
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/yeti.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style>h1 {font-size: 34px;}
h1.title {font-size: 38px;}
h2 {font-size: 30px;}
h3 {font-size: 24px;}
h4 {font-size: 18px;}
h5 {font-size: 16px;}
h6 {font-size: 12px;}
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
pre:not([class]) { background-color: white }</style>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/navigation-1.1/codefolding.js"></script>
<link href="site_libs/highlightjs-9.12.0/default.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<script src="site_libs/htmlwidgets-1.5.4/htmlwidgets.js"></script>
<script src="site_libs/plotly-binding-4.10.0/plotly.js"></script>
<script src="site_libs/typedarray-0.1/typedarray.min.js"></script>
<link href="site_libs/crosstalk-1.1.1/css/crosstalk.css" rel="stylesheet" />
<script src="site_libs/crosstalk-1.1.1/js/crosstalk.min.js"></script>
<link href="site_libs/plotly-htmlwidgets-css-2.5.1/plotly-htmlwidgets.css" rel="stylesheet" />
<script src="site_libs/plotly-main-2.5.1/plotly-latest.min.js"></script>
<link href="site_libs/font-awesome-5.1.0/css/all.css" rel="stylesheet" />
<link href="site_libs/font-awesome-5.1.0/css/v4-shims.css" rel="stylesheet" />
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
pre code {
padding: 0;
}
</style>
<style type="text/css">
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #adb5bd;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script type="text/javascript">
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.tab('show');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
// Navbar adjustments
var navHeight = $(".navbar").first().height() + 15;
var style = document.createElement('style');
var pt = "padding-top: " + navHeight + "px; ";
var mt = "margin-top: -" + navHeight + "px; ";
var css = "";
// offset scroll position for anchor links (for fixed navbar)
for (var i = 1; i <= 6; i++) {
css += ".section h" + i + "{ " + pt + mt + "}\n";
}
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css;
document.head.appendChild(style);
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
.code-folding-btn { margin-bottom: 4px; }
</style>
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
@media print {
.toc-content {
/* see https://github.com/w3c/csswg-drafts/issues/4434 */
float: right;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Home</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Overview
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="overview.html">Project Overview</a>
</li>
<li>
<a href="usa_analyzing.html">United States Overview</a>
</li>
</ul>
</li>
<li>
<a href="report.html">Report</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
States of Choice
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="CA_data_analyzing.html">California</a>
</li>
<li>
<a href="FL_data_analyzing.html">Florida</a>
</li>
<li>
<a href="NY_data_analyzing.html">New York City</a>
</li>
<li>
<a href="Ohio_data_analyzing.html">Ohio</a>
</li>
</ul>
</li>
<li>
<a href="https://paulawucu.shinyapps.io/shiny_dashboard_upload/">Interactive Maps</a>
</li>
<li>
<a href="regression_us.html">Regression</a>
</li>
<li>
<a href="fact.html">Facts About</a>
</li>
<li>
<a href="https://youtu.be/nDrmCsTRqqs">
<span class="fa fa-play-circle fa-sm"></span>
</a>
</li>
<li>
<a href="https://github.com/paulawucu/final_project">
<span class="fa fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div id="header">
<div class="btn-group pull-right float-right">
<button type="button" class="btn btn-default btn-xs btn-secondary btn-sm dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right" style="min-width: 50px;">
<li><a id="rmd-show-all-code" href="#">Show All Code</a></li>
<li><a id="rmd-hide-all-code" href="#">Hide All Code</a></li>
</ul>
</div>
<h1 class="title toc-ignore">Florida Data Analysis</h1>
</div>
<div id="florida-over-all" class="section level2">
<h2>Florida over all</h2>
<pre class="r"><code>drug_overdose = read_csv("./data/VSRR_Provisional_Drug_Overdose_Death_Counts.csv") %>%
janitor::clean_names()
state_level = c(state.name[1:8], "District of Columbia", state.name[9:32],"New York City", state.name[33:50])
drug_overdose_52 =
drug_overdose %>%
filter(!(state_name %in% c("United States"))) %>%
relocate(state_name) %>%
mutate(month = factor(month, levels = month.name), # change month and year to factor
year = factor(year),
state_name = factor(state_name, levels = state_level)) %>%
arrange(state_name) %>%
group_by(state_name, year) %>%
mutate(month = sort(month))
fl_death =
drug_overdose_52 %>%
filter(state_name %in% "Florida",
indicator %in% c("Number of Deaths", "Number of Drug Overdose Deaths")) %>%
select(year, month, indicator, deaths = data_value) %>%
pivot_wider(
names_from = indicator,
values_from = deaths
) %>%
janitor::clean_names() %>%
group_by(year, month) %>%
mutate(
percent_overdose_death = number_of_drug_overdose_deaths / number_of_deaths
)
fl_death %>%
ggplot(aes(x = month, y = percent_overdose_death, group = year, color = year))+
geom_point()+
geom_line()+
ggtitle("Trends in Percent of Drug Overdose Death in FL Across Years") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Percent of Drug Overdose Death", x = "Month", caption = "Data comes from VSRR_Provisional_Drug_Overdose_Death_Counts dataset.")</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-2-1.png" width="90%" /></p>
<pre class="r"><code>fl_death %>%
ggplot(aes(x = month, y = percent_overdose_death, group = NA, color = year))+
geom_point()+
geom_line()+
scale_x_discrete(breaks = c("January", "April", "July", "October", "December"),
labels = c("Jan", "Apr", "Jul", "Oct", "Dec")) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust= 1))+
ggtitle("Trends in Percent of Drug Overdose Death in FL Across Years") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Percent of Drug Overdose Death", x = "Month", caption = "Data comes from VSRR_Provisional_Drug_Overdose_Death_Counts dataset.")+
facet_grid(.~year)</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-2-2.png" width="90%" /></p>
<p>There’s a clear trend from years to years that in Florida, percent of drug overdose deaths increase overtime. In 2016, the percent of drug overdose deaths changes drastically from month to month, while in 2020, the percent of deaths reached its new high, made up more than 3% of the total deaths.</p>
<p><br><br></p>
</div>
<div id="opioids-in-years" class="section level2">
<h2>Opioids in years</h2>
<p>It’s extremely hard to find drug-specific data for those state missing specific drug types. Unfortunately, Florida is one of them. By contrast, data on opioid is much easier to find. There is another reason that we chose to select opioid instead of other drug types: it accounts for most of the death counts in the US across years. We show our justification down below.</p>
<pre class="r"><code>opioids_df =
drug_overdose_52 %>%
ungroup() %>%
select(state_name, year, month, indicator, data_value) %>%
filter(!(state_name %in% c("Alabama", "Arkansas", "Florida", "Idaho", "Louisiana", "Minnesota", "Nebraska", "North Dakota", "Pennsylvania")),
str_detect(indicator, "T4"),
!year %in% c(2016, 2017)) %>%
mutate(opioids_yn = ifelse(str_detect(indicator, "opioids"), TRUE, FALSE)) %>%
group_by(year, month, opioids_yn) %>%
summarize(opioids_rate = mean(data_value, na.rm = TRUE))
opioids_df %>%
ungroup() %>%
ggplot(aes(x = month, y = opioids_rate, group = opioids_yn, color = opioids_yn))+
geom_point()+
geom_line()+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust= 1))+
ggtitle("Opioids vs. Other Drugs Combined in US Across Years") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Drug Overdose Death Counts", x = "Month", caption = "Data comes from VSRR_Provisional_Drug_Overdose_Death_Counts dataset.")+
facet_grid(.~year)</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-3-1.png" width="90%" /> <br> A picture is worth thousands of words, during the past 6 years, the opioid’s line was high above all other drugs combined, which proved our statement above.</p>
<p><br></p>
<div id="opioid-analyses-in-florida" class="section level3">
<h3>Opioid Analyses in Florida</h3>
<pre class="r"><code># read in data
fl_opi_death = read_csv("./data/fl_opi_death_15_19.csv") %>%
janitor::clean_names() %>%
select(state_name = state, year, month, deaths)
fl_opi_death_add = read_csv("./data/fl_opi_death_20_21.csv") %>%
janitor::clean_names() %>%
select(state_name = occurrence_state, year = year_code, month, deaths)
fl_opi_death = bind_rows(fl_opi_death, fl_opi_death_add) %>%
filter(!is.na(month)) %>%
separate(month, into = c("month", "useless"), sep = "\\,") %>%
select(-useless) %>%
mutate(month = substr(month, 1,3),
month = month.name[match(str_to_title(month), month.abb)],
month = factor(month, levels = month.name),
year = factor(year)) %>%
select(-state_name) %>%
slice(-77) # May 2021 is fairly provisional and inconsistent with other states
fl_opi_death %>%
ggplot(aes(x = month, y = deaths, group = year, color = year))+
geom_point()+
geom_line()+
ggtitle("Opioids Deaths in Florida Across Years") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Opioids Overdose Death Counts", x = "Month", caption = "Opioids identified by selecting T40.0-40.4, 40.6")</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-4-1.png" width="90%" /></p>
<pre class="r"><code>fl_opi_death %>%
ggplot(aes(x = month, y = deaths, group = NA, color = year))+
geom_point()+
geom_line()+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust= 1))+
ggtitle("Opioids Deaths in Florida Across Years") +
theme(plot.title = element_text(hjust = 0.5)) +
facet_grid(.~year)+
labs(
title = "Number of Drug Overdose Deaths with Drug Categories by Year in CA",
x = "Month",
y = "Number of Drug Overdose Deaths",
caption = "Opioids identified by selecting T40.0-40.4, 40.6"
) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) </code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-4-2.png" width="90%" /></p>
<p>Although in a zig-zag fashion, the death counts cause mainly by Opioids is climbing, every single month. There is a drastic drop between 2019 and 2020, probably because 1. the data is provisional for 2020 and 2021, indicated by the CDC; 2. COVID-19 interfered with the autopsy of drug overdose investigation.</p>
<p><br><br></p>
</div>
</div>
<div id="by-age-group-and-race" class="section level2">
<h2>By Age Group and Race</h2>
<pre class="r"><code>fl_death_by_age =
read_csv("./data/agegroup_race_state_year_99-19.csv") %>%
janitor::clean_names() %>%
select(state, year, ten_year_age_groups, race, deaths, population) %>%
filter(state %in% c("Florida")) %>%
mutate(year = factor(year),
crude_rate = deaths/population * 100000)
fl_death_by_age %>%
mutate(ten_year_age_groups = gsub("years", "", ten_year_age_groups)) %>%
ggplot(aes(x = ten_year_age_groups , y = crude_rate, fill = race)) +
geom_boxplot(alpha = 0.5)+
ggtitle("Crude Death Rate in Florida Across Race and Age Groups") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Drug Overdose Death Crude Rates", x = "Age Groups")+
facet_grid(~race)+
theme(axis.text.x = element_text(angle = 90, vjust = 0.4, hjust = 1))</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-5-1.png" width="90%" /></p>
<p>Asian or Pacific Islanders only have drug overdose deaths cases between 25-44 age groups, while both Black or African Americans and White people have drug overdose deaths cases from age group 15-24 to nearly 85+. It’s also clear that in general white people have the highest crude death rates in nearly each age group, and the crude death rates reached as high as 60+ deaths/100,000 white people.</p>
<p><br><br></p>
</div>
<div id="income" class="section level2">
<h2>Income</h2>
<pre class="r"><code>fl_eco_df =
read_csv("./data/median_household_income_fl.csv") %>%
janitor::clean_names() %>%
select(year, household_income_by_race, household_income_by_race_moe, geography) %>%
filter(
str_detect(geography, "FL|United States|Florida"),
year >= "2015") %>%
mutate(year = factor(year))
fl_eco_df %>%
mutate(text_label = str_c("Year: ", year, "\nMedian Household Income: $", household_income_by_race,
"\nMargin of error: ± $", household_income_by_race_moe)) %>%
plot_ly(
x = ~year, y = ~household_income_by_race, color = ~geography, text = ~text_label,
alpha = 0.5, type = "scatter", mode = "markers+lines", colors = "viridis", error_y = ~list(array = household_income_by_race_moe)) %>%
layout(
title = "Median Household Income: FLorida vs. The U.S",
xaxis = list(title = "Year"),
yaxis = list(title = "Median Household Income"))</code></pre>
<div id="htmlwidget-cb20fb59c47d14ad5d54" style="width:90%;height:576px;" class="plotly html-widget"></div>
<script type="application/json" data-for="htmlwidget-cb20fb59c47d14ad5d54">{"x":{"visdat":{"f8824921d92f":["function () ","plotlyVisDat"]},"cur_data":"f8824921d92f","attrs":{"f8824921d92f":{"x":{},"y":{},"text":{},"mode":"markers+lines","error_y":{},"color":{},"colors":"viridis","alpha":0.5,"alpha_stroke":1,"sizes":[10,100],"spans":[1,20],"type":"scatter"}},"layout":{"margin":{"b":40,"l":60,"t":25,"r":10},"title":"Median Household Income: FLorida vs. The U.S","xaxis":{"domain":[0,1],"automargin":true,"title":"Year","type":"category","categoryorder":"array","categoryarray":["2015","2016","2017","2018","2019"]},"yaxis":{"domain":[0,1],"automargin":true,"title":"Median Household Income"},"hovermode":"closest","showlegend":true},"source":"A","config":{"modeBarButtonsToAdd":["hoverclosest","hovercompare"],"showSendToCloud":false},"data":[{"x":["2019","2018","2017","2016","2015"],"y":[59227,55462,52594,50860,49426],"text":["Year: 2019<br />Median Household Income: $59227<br />Margin of error: ± $443","Year: 2018<br />Median Household Income: $55462<br />Margin of error: ± $384","Year: 2017<br />Median Household Income: $52594<br />Margin of error: ± $364","Year: 2016<br />Median Household Income: $50860<br />Margin of error: ± $241","Year: 2015<br />Median Household Income: $49426<br />Margin of error: ± $331"],"mode":"markers+lines","error_y":{"color":"rgba(68,1,84,0.5)","array":[118,443,680,1173,1146]},"type":"scatter","name":"Florida","marker":{"color":"rgba(68,1,84,0.5)","line":{"color":"rgba(68,1,84,1)"}},"textfont":{"color":"rgba(68,1,84,0.5)"},"error_x":{"color":"rgba(68,1,84,0.5)"},"line":{"color":"rgba(68,1,84,0.5)"},"xaxis":"x","yaxis":"y","frame":null},{"x":["2019","2018","2017","2016","2015"],"y":[60141,56328,54284,51362,50441],"text":["Year: 2019<br />Median Household Income: $60141<br />Margin of error: ± $680","Year: 2018<br />Median Household Income: $56328<br />Margin of error: ± $732","Year: 2017<br />Median Household Income: $54284<br />Margin of error: ± $820","Year: 2016<br />Median Household Income: $51362<br />Margin of error: ± $402","Year: 2015<br />Median Household Income: $50441<br />Margin of error: ± $398"],"mode":"markers+lines","error_y":{"color":"rgba(59,82,139,0.5)","array":[94,384,732,1521,970]},"type":"scatter","name":"Miami-Fort Lauderdale-West Palm Beach, FL","marker":{"color":"rgba(59,82,139,0.5)","line":{"color":"rgba(59,82,139,1)"}},"textfont":{"color":"rgba(59,82,139,0.5)"},"error_x":{"color":"rgba(59,82,139,0.5)"},"line":{"color":"rgba(59,82,139,0.5)"},"xaxis":"x","yaxis":"y","frame":null},{"x":["2019","2018","2017","2016","2015"],"y":[61876,58610,55089,52385,51077],"text":["Year: 2019<br />Median Household Income: $61876<br />Margin of error: ± $1173","Year: 2018<br />Median Household Income: $58610<br />Margin of error: ± $1521","Year: 2017<br />Median Household Income: $55089<br />Margin of error: ± $1026","Year: 2016<br />Median Household Income: $52385<br />Margin of error: ± $963","Year: 2015<br />Median Household Income: $51077<br />Margin of error: ± $824"],"mode":"markers+lines","error_y":{"color":"rgba(33,144,141,0.5)","array":[86,364,820,1026,599]},"type":"scatter","name":"Orlando-Kissimmee-Sanford, FL","marker":{"color":"rgba(33,144,141,0.5)","line":{"color":"rgba(33,144,141,1)"}},"textfont":{"color":"rgba(33,144,141,0.5)"},"error_x":{"color":"rgba(33,144,141,0.5)"},"line":{"color":"rgba(33,144,141,0.5)"},"xaxis":"x","yaxis":"y","frame":null},{"x":["2019","2018","2017","2016","2015"],"y":[57906,54912,52212,51115,48911],"text":["Year: 2019<br />Median Household Income: $57906<br />Margin of error: ± $1146","Year: 2018<br />Median Household Income: $54912<br />Margin of error: ± $970","Year: 2017<br />Median Household Income: $52212<br />Margin of error: ± $599","Year: 2016<br />Median Household Income: $51115<br />Margin of error: ± $514","Year: 2015<br />Median Household Income: $48911<br />Margin of error: ± $891"],"mode":"markers+lines","error_y":{"color":"rgba(93,200,99,0.5)","array":[115,241,402,963,514]},"type":"scatter","name":"Tampa-St. Petersburg-Clearwater, FL","marker":{"color":"rgba(93,200,99,0.5)","line":{"color":"rgba(93,200,99,1)"}},"textfont":{"color":"rgba(93,200,99,0.5)"},"error_x":{"color":"rgba(93,200,99,0.5)"},"line":{"color":"rgba(93,200,99,0.5)"},"xaxis":"x","yaxis":"y","frame":null},{"x":["2019","2018","2017","2016","2015"],"y":[65712,61937,60336,57617,55775],"text":["Year: 2019<br />Median Household Income: $65712<br />Margin of error: ± $118","Year: 2018<br />Median Household Income: $61937<br />Margin of error: ± $94","Year: 2017<br />Median Household Income: $60336<br />Margin of error: ± $86","Year: 2016<br />Median Household Income: $57617<br />Margin of error: ± $115","Year: 2015<br />Median Household Income: $55775<br />Margin of error: ± $85"],"mode":"markers+lines","error_y":{"color":"rgba(253,231,37,0.5)","array":[85,331,398,824,891]},"type":"scatter","name":"United States","marker":{"color":"rgba(253,231,37,0.5)","line":{"color":"rgba(253,231,37,1)"}},"textfont":{"color":"rgba(253,231,37,0.5)"},"error_x":{"color":"rgba(253,231,37,0.5)"},"line":{"color":"rgba(253,231,37,0.5)"},"xaxis":"x","yaxis":"y","frame":null}],"highlight":{"on":"plotly_click","persistent":false,"dynamic":false,"selectize":false,"opacityDim":0.2,"selected":{"opacity":1},"debounce":0},"shinyEvents":["plotly_hover","plotly_click","plotly_selected","plotly_relayout","plotly_brushed","plotly_brushing","plotly_clickannotation","plotly_doubleclick","plotly_deselect","plotly_afterplot","plotly_sunburstclick"],"base_url":"https://plot.ly"},"evals":[],"jsHooks":[]}</script>
<p>The median household income of Florida and all of its region divisions all fell below the median household income of US. There’s a steady trends in all lines, indicating that the median household income increases over the years. <br></p>
<pre class="r"><code>#patchwork
income_drug_df =
fl_death %>%
ungroup() %>%
group_by(year) %>%
summarize(overdose_death_rate = sum(number_of_drug_overdose_deaths)/sum(number_of_deaths)) %>%
inner_join(., fl_eco_df %>% filter(geography %in% "Florida"))
year_death =
income_drug_df %>%
ggplot(aes(x = year, y = overdose_death_rate, group = NA))+
geom_point()+
geom_line()+
ggtitle("Crude Death Rate Across Years in FL") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Drug Overdose Death Crude Rates", x = "Year")
income_year =
income_drug_df %>%
ggplot(aes(x = year, y = household_income_by_race, group = NA))+
geom_point()+
geom_line()+
ggtitle("Median Household Income Across Years in FL") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Median Household Income ", x = "Year")
smooth =
income_drug_df %>%
ggplot(aes(x = household_income_by_race, y = overdose_death_rate, group = NA))+
geom_point()+
geom_smooth(method = "lm", se = FALSE, color = "royalblue4")+
ggtitle("Crude Death Rate vs. Median Household Income") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Drug Overdose Death Crude Rates", x = "Median Household Income")
(year_death + income_year)/smooth</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-7-1.png" width="90%" /></p>
<p>Though we only have several points, the smoothed line of the bottom figure still showed a positive relation between drug overdose crude rate and median household income. This relationship can also be seen in the above two figure: as year goes by, the income rose, while the drug overdose death crude rates also rose.</p>
<p><br><br></p>
</div>
<div id="counties-change-over-the-years" class="section level2">
<h2>Counties change over the years</h2>
<p>Last but not the least, we wanted to draw maps to see what are the distribution of drug overdose death across counties. High crude death rates happened along the coastline for 2003 and 2008, specifically along middle east and west coasts, as well as in Key West Islands. Later in year 2013 and 2018, counties that have high crude death rates aggregated more the center of this peninsular, while the county that has the highest crude death rates is still along the coast. Together with the median household income graph above, we can see that both Miami-Fort Lauderdale-West Palm Beach and Tampa-St. Petersburg-Clearwater regions have low household income and have higher drug overdose death rates. <br></p>
<div id="counties-change-5-yr-interval" class="section level3 tabset">
<h3 class="tabset">Counties change, 5-yr interval</h3>
<div id="section" class="section level4">
<h4>2003</h4>
<pre class="r"><code>year_select = 2003
start_county_df = left_join(fl_county_df,abc, by = "county") %>%
select(county, year, death_rate, fips) %>%
filter(year == year_select)
fips_add = c(12027, 12091, 12109, 12111)
a = 1
for (i in c(13,46,55,56)){
start_county_df[i,4] = fips_add[a]
a = a+1
}
start_county_df %>%
group_by(fips) %>%
mutate(fips = as.numeric(fips)) %>%
rename(region = fips,
value = death_rate) %>%
county_choropleth(state_zoom = c("florida"),
legend = "death_rate")+
highlight_county(start_county_df[which.max(pull(start_county_df, death_rate)),])+
add_text_county(start_county_df[which.max(pull(start_county_df, death_rate)),])</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-9-1.png" width="90%" /></p>
</div>
<div id="section-1" class="section level4">
<h4>2008</h4>
<pre class="r"><code>year_select = 2008
start_county_df = left_join(fl_county_df,abc, by = "county") %>%
select(county, year, death_rate, fips) %>%
filter(year == year_select)
fips_add = c(12027, 12091, 12109, 12111)
a = 1
for (i in c(13,46,55,56)){
start_county_df[i,4] = fips_add[a]
a = a+1
}
start_county_df %>%
group_by(fips) %>%
mutate(fips = as.numeric(fips)) %>%
rename(region = fips,
value = death_rate) %>%
county_choropleth(state_zoom = c("florida"),
legend = "death_rate")+
highlight_county(start_county_df[which.max(pull(start_county_df, death_rate)),])+
add_text_county(start_county_df[which.max(pull(start_county_df, death_rate)),])</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-10-1.png" width="90%" /></p>
</div>
<div id="section-2" class="section level4">
<h4>2013</h4>
<pre class="r"><code>year_select = 2013
start_county_df = left_join(fl_county_df,abc, by = "county") %>%
select(county, year, death_rate, fips) %>%
filter(year == year_select)
fips_add = c(12027, 12091, 12109, 12111)
a = 1
for (i in c(13,46,55,56)){
start_county_df[i,4] = fips_add[a]
a = a+1
}
start_county_df %>%
group_by(fips) %>%
mutate(fips = as.numeric(fips)) %>%
rename(region = fips,
value = death_rate) %>%
county_choropleth(state_zoom = c("florida"),
legend = "death_rate")+
highlight_county(start_county_df[which.max(pull(start_county_df, death_rate)),])+
add_text_county(start_county_df[which.max(pull(start_county_df, death_rate)),])</code></pre>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-11-1.png" width="90%" /></p>
</div>
<div id="section-3" class="section level4">
<h4>2018</h4>
<p><img src="FL_data_analyzing_files/figure-html/unnamed-chunk-12-1.png" width="90%" /></p>
</div>
</div>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
window.initializeCodeFolding("hide" === "show");
});
</script>
<script>
$(document).ready(function () {
// temporarily add toc-ignore selector to headers for the consistency with Pandoc
$('.unlisted.unnumbered').addClass('toc-ignore')
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_');
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>