-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_local_novelty_detection.m
121 lines (98 loc) · 4.42 KB
/
demo_local_novelty_detection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
function demo_local_novelty_detection
% function demo_local_novelty_detection
%
% BRIEF
% A brief demo showing how to use the local novelty detection code.
%
% The UCI USPS digits dataset serves as playground.
% All steps from loading data, over pre-processing, parameter settings,
% learning, testing to final evaluations are explained in detail.
%
% INPUT
% nothing
%
% OUTPUT
% nothing
%
% author: Paul Bodesheim, Alexander Freytag
% date : 18-11-2014 ( dd-mm-yyyy )
%% (1) load data for evaluation
% specify destination of USPS training data
% needs to be adapted to your system!
s_fn_features_train = '/home/user/data/UCI/USPS/optdigits.tra';
assert( exist(s_fn_features_train, 'file') == 2, ...
sprintf('%s not available. You can download the USPS digits dataset available at https://archive.ics.uci.edu/ml/machine-learning-databases/optdigits/ ', s_fn_features_train) ...
);
% specify destination of USPS test data
% needs to be adapted to your system!
s_fn_features_test = '/home/user/data/UCI/USPS/optdigits.tes';
% load USPS train data
A = load( s_fn_features_train );
dataTrain = A(:,1:64);
labelsTrain = A(:,65);
%simulate novelty detection scenario: only 3 classes are known
knownClasses = [1,2,3];
idxKnown = ismember ( labelsTrain, knownClasses);
dataTrain = dataTrain ( idxKnown , : );
labelsTrain = labelsTrain ( idxKnown );
clear A;
% load USPS test data
A = load( s_fn_features_test );
dataTest = A(:,1:64);
labelsTest = A(:,65);
clear A;
%% (2) training (pre-computations), and parameter specification
% 2.1) compute covariance matrix for training data
covFct = {'covSEisoU'};
% check that covariance/kernel function is available on your system
% suggestion: possible add gpml toolbox
% addpath(genpath( '<myPathToGPMLToolbox> ) );
assert( exist(covFct{:}, 'file') == 2, ...
sprintf('%s not available. You could include gpml-toolbox available at http://www.gaussianprocess.org/gpml/code/matlab/doc/ ', covFct{:} ) ...
);
covParam = [3.0];
K = feval( covFct{:},covParam, dataTrain);
% 2.2) specify settings
% set names of methods you want to apply
% note: scripts for learning novelty detection models need to be named
% "learn_<MyModel>.m"
% novelty detection model for one-class-scenarios
methods{1} = 'oneClassNovelty_knfst';
% novelty detection model for multi-class-scenarios
methods{2} = 'multiClassNovelty_knfst';
% check that methods are available in your system
for i=1:length(methods)
s_fctName = sprintf('learn_%s.m', methods{i});
assert( exist(s_fctName, 'file') == 2, ...
sprintf('%s not available, aborting...', s_fctName ) ...
);
%note: if an error occured, you need to add the folder of the
% specified novelty detection methods to your matlab search path
%
% suggestion: add KNFST folder
% addpath(genpath( '<myPathToKNFST> ) );
end
% set additional parameters, left empty here
method_params{1} = {};
method_params{2} = {};
% of course you can specify another size of the neighborhood
numNeighbors = min ( 25, round(length(labelsTrain)/2) );
% 2.3) perform computations for "training"
model = learn_local_novelty_detection_model( K, labelsTrain, methods, method_params, numNeighbors );
%% (3) use local learning for unseen data
% 3.1) compute covariance matrix for test data
Ks = feval( covFct{:},covParam, dataTrain, dataTest);
% 3.2) run local novelty detection on test data
scores = test_local_novelty_detection_model( model, Ks );
%% (4) evaluate local learning results
figure;
idxTestKnown = ismember ( labelsTest, knownClasses );
numKnownTestSamples = sum(idxTestKnown);
idxTestKnown = ismember ( labelsTest, knownClasses );
% plot novelty scores for samples of known classes
plot ( 1:numKnownTestSamples, scores(idxTestKnown), 'g');
hold on;
% plot novelty scores for samples of unknown classes
% these guys should be HIGHER then those of known classes...
plot ( (numKnownTestSamples+1):length(labelsTest), scores(~idxTestKnown),'b');
end