-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
258 lines (205 loc) · 8.29 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import pickle
import torch
import random
import subprocess
import re
import pretty_midi
import gradio as gr
from contextlib import nullcontext
from model import GPTConfig, GPT
from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter
from pedalboard.io import AudioFile
import gradio as gr
in_space = os.getenv("SYSTEM") == "spaces"
temp_dir = 'temp'
os.makedirs(temp_dir, exist_ok=True)
init_from = 'resume'
out_dir = 'checkpoints'
ckpt_load = 'model.pt'
start = "000000000000\n"
num_samples = 1
max_new_tokens = 768
seed = random.randint(1, 100000)
torch.manual_seed(seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = False
exec(open('configurator.py').read())
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cpu' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
if init_from == 'resume':
ckpt_path = os.path.join(out_dir, ckpt_load)
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
elif init_from.startswith('gpt2'):
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
model.eval()
model.to(device)
if compile:
model = torch.compile(model)
tokenizer = re.compile(r'000000000000|\d{2}|\n')
dataset = checkpoint['config']['dataset']
meta_path = os.path.join('data', dataset, 'meta.pkl')
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
stoi = meta.get('stoi', None)
itos = meta.get('itos', None)
def encode(text):
matches = tokenizer.findall(text)
return [stoi[c] for c in matches]
def decode(encoded):
return ''.join([itos[i] for i in encoded])
def clear_midi(dir):
for file in os.listdir(dir):
if file.endswith('.mid'):
os.remove(os.path.join(dir, file))
clear_midi(temp_dir)
def generate_midi(temperature, top_k):
start_ids = encode(start)
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
midi_events = []
seq_count = 0
with torch.no_grad():
for _ in range(num_samples):
sequence = []
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
tkn_seq = decode(y[0].tolist())
lines = tkn_seq.splitlines()
for event in lines:
if event.startswith(start.strip()):
if sequence:
midi_events.append(sequence)
sequence = []
seq_count += 1
elif event.strip() == "":
continue
else:
try:
p = int(event[0:2])
v = int(event[2:4])
s = int(event[4:8])
e = int(event[8:12])
except ValueError:
p, v, s, e = 0, 0, 0, 0
sequence.append({'file_name': f'nanompc_{seq_count:02d}', 'pitch': p, 'velocity': v, 'start': s, 'end': e})
if sequence:
midi_events.append(sequence)
round_bars = []
for sequence in midi_events:
filtered_sequence = []
for event in sequence:
if event['start'] < 1536 and event['end'] <= 1536:
filtered_sequence.append(event)
if filtered_sequence:
round_bars.append(filtered_sequence)
midi_events = round_bars
return midi_events
def write_midi(midi_events, bpm):
midi_data = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96)
midi_data.time_signature_changes.append(pretty_midi.containers.TimeSignature(4, 4, 0))
instrument = pretty_midi.Instrument(0)
midi_data.instruments.append(instrument)
for sequence in midi_events:
for event in sequence:
pitch = event['pitch']
velocity = event['velocity']
start = midi_data.tick_to_time(event['start'])
end = midi_data.tick_to_time(event['end'])
note = pretty_midi.Note(pitch=pitch, velocity=velocity, start=start, end=end)
instrument.notes.append(note)
midi_path = os.path.join(temp_dir, 'output.mid')
midi_data.write(midi_path)
print(f"Generated: {midi_path}")
def render_wav(midi_file, uploaded_sf2=None):
sf2_dir = 'sf2_kits'
audio_format = 's16'
sample_rate = '44100'
gain = '2.0'
if uploaded_sf2:
sf2_file = uploaded_sf2
else:
sf2_files = [f for f in os.listdir(os.path.join(sf2_dir, dataset)) if f.endswith('.sf2')]
if not sf2_files:
raise ValueError("No SoundFont (.sf2) file found in directory.")
sf2_file = os.path.join(sf2_dir, dataset, random.choice(sf2_files))
print(f"Using SoundFont: {sf2_file}")
output_wav = os.path.join(temp_dir, 'output.wav')
with open(os.devnull, 'w') as devnull:
command = [
'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate),
'-o', f'audio.file.format={audio_format}', '-g', str(gain)
]
subprocess.call(command, stdout=devnull, stderr=devnull)
return output_wav
def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None):
midi_events = generate_midi(temperature, top_k)
if not midi_events:
return "Error generating MIDI.", None, None
write_midi(midi_events, bpm)
midi_file = os.path.join(temp_dir, 'output.mid')
wav_raw = render_wav(midi_file, uploaded_sf2)
wav_fx = os.path.join(temp_dir, 'output_fx.wav')
sfx_settings = [
{
'board': Pedalboard([
Reverb(room_size=0.01, wet_level=random.uniform(0.005, 0.01), dry_level=0.75, width=1.0),
Compressor(threshold_db=-3.0, ratio=8.0, attack_ms=0.0, release_ms=300.0),
])
}
]
for setting in sfx_settings:
board = setting['board']
with AudioFile(wav_raw) as f:
with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
return midi_file, wav_fx
custom_css = """
#generate-btn {
background-color: #6366f1 !important;
color: white !important;
border: none !important;
font-size: 16px;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
}
#generate-btn:hover {
background-color: #4f51c5 !important;
}
"""
with gr.Blocks(css=custom_css, theme="soft") as iface:
gr.Markdown("<h1 style='font-weight: bold; text-align: center;'>nanoMPC - AI Midi Drum Sequencer</h1>")
gr.Markdown("<p style='text-align:center;'>nanoMPC is a tiny transformer model that generates MIDI drum beats.</p>")
with gr.Row():
with gr.Column(scale=1):
bpm = gr.Slider(minimum=50, maximum=200, step=1, value=120, label="BPM")
temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature")
top_k = gr.Slider(minimum=4, maximum=256, step=1, value=128, label="Top-k")
soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0)")
with gr.Column(scale=1):
midi_file = gr.File(label="MIDI File Output")
audio_file = gr.Audio(label="Generated Audio Output", type="filepath")
generate_button = gr.Button("Generate", elem_id="generate-btn")
gr.Markdown(f"<p style='text-align:center;'><b>Model: {dataset}</b></p>")
generate_button.click(
fn=generate_and_return_files,
inputs=[bpm, temperature, top_k, soundfont],
outputs=[midi_file, audio_file]
)
iface.launch(share=True)