Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs (ϵ-MATS)
Tianyuan Jin* · Hao-Lun Hsu† · William Chang‡ · Pan Xu†
* National University of Singapore · † Duke University · ‡ University of California, Los Angles
Official implementation of the paper "Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs (ϵ-MATS)" which combines the MATS exploration with probability ε and greedy exploitation with probability 1 − ε.
- python==3.6
- scipy >=1.2.1
- matplotlib >= 3.0.2
- pandas >= 0.25.3
- numpy >= 1.17.0
# Enter the anaconda virtual environment
source activate epsilon_mats
# Train on Bernoulli0101 using random exploration on 10 agents
python main.py --algo rd --env_name bernoulli --iter 2000 --seed 0 --n_agents 10
# Train on Poisson0101 using mats (including different epsilon) on 20 agents
python main.py --algo all --env_name poisson --iter 2000 --seed 0 --n_agents 20
@inproceedings{Jin2024MATS,
title={Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs},
author={Jin, Tianyuan and Hsu, Hao-Lun and Chang, William and Xu, Pan},
booktitle={Annual AAAI Conference on Artificial Intelligence (AAAI)},
volume={38},
number={11},
pages={12956--12964},
year={2024}
}