-
Notifications
You must be signed in to change notification settings - Fork 1
/
atari_analysis.py
70 lines (63 loc) · 2.38 KB
/
atari_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import math
import numpy as np
from scipy.stats import bootstrap
from utils.plotter import Plotter
from utils.sweeper import unfinished_index, time_info, memory_info
from utils.helper import set_one_thread
def get_process_result_dict(result, config_idx, mode='Train'):
result_dict = {
'Env': result['Env'][0],
'Agent': result['Agent'][0],
'Config Index': config_idx,
'Return (mean)': result['Return'][-10:].mean(skipna=False) if mode=='Train' else result['Return'][-5:].mean(skipna=False),
'Return (max)': result['Return'][-10:].max(skipna=False) if mode=='Train' else result['Return'][-5:].max(skipna=False)
}
return result_dict
def get_csv_result_dict(result, config_idx, mode='Train', ci=90, method='percentile'):
CI = bootstrap((result['Return (mean)'].values.tolist(),), np.mean, confidence_level=ci/100, method=method).confidence_interval
result_dict = {
'Env': result['Env'][0],
'Agent': result['Agent'][0],
'Config Index': config_idx,
'Return (mean)': result['Return (mean)'].mean(skipna=False),
'Return (se)': result['Return (mean)'].sem(ddof=0),
'Return (bootstrap_mean)': (CI.high + CI.low) / 2,
f'Return (ci={ci})': (CI.high - CI.low) / 2,
'Return (max)': result['Return (max)'].max(skipna=False)
}
return result_dict
cfg = {
'exp': 'exp_name',
'merged': True,
'x_label': 'Step',
'y_label': 'Return',
'hue_label': 'Agent',
'show': False,
'imgType': 'png',
'estimator': 'mean',
'ci': ('ci', 95),
'x_format': None,
'y_format': None,
'xlim': {'min': None, 'max': None},
'ylim': {'min': None, 'max': None},
'EMA': True,
'loc': 'upper left',
'sweep_keys': ['optimizer/name', 'optimizer/kwargs/noise_scale', 'optimizer/kwargs/gamma', 'optimizer/kwargs/lr', 'optimizer/kwargs/a', 'agent/update_num', 'agent/is_double', 'agent/eps_start'],
'sort_by': ['Return (mean)', 'Return (max)'],
'ascending': [False, True],
'runs': 1
}
def analyze(exp, runs=1):
set_one_thread()
cfg['exp'] = exp
cfg['runs'] = runs
plotter = Plotter(cfg)
plotter.csv_results('Test', get_csv_result_dict, get_process_result_dict)
plotter.plot_results(mode='Test', indexes='all')
if __name__ == "__main__":
exp, runs = 'atari8_aulmc', 5
unfinished_index(exp, runs=runs)
memory_info(exp, runs=runs)
time_info(exp, runs=runs)
analyze(exp, runs=runs)