-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstereo.py
77 lines (57 loc) · 3.37 KB
/
stereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2
import numpy as np
def create_stereo_pair(image, depth_map, baseline_distance=0.005, depth_scale_factor=0.5):
"""
Generates a stereo pair of images (left and right) from a single image and a depth map by simulating
the parallax effect seen in stereo vision.
Parameters:
- image: The input image for which the stereo pair will be created.
- depth_map: The depth map of the input image. Values represent depth intensity.
- baseline_distance: The distance between the two virtual cameras. Default is 0.005.
- depth_scale_factor: A scaling factor applied to the depth map to adjust the effect of depth. Default is 0.5.
Returns:
A tuple containing the left and right images of the stereo pair.
"""
# Ensure the input image and depth map have the same dimensions
assert image.shape[:2] == depth_map.shape[:2], 'The image and depth map must be the same size.'
# Scale and normalize the depth map for processing
depth_map = depth_map.astype(np.float32) / depth_scale_factor
depth_map_normalized = cv2.normalize(depth_map, None, 0, 1, cv2.NORM_MINMAX)
height, width = image.shape[:2]
# Create coordinate grids for the image pixels
x_coords = np.tile(np.arange(width), (height, 1))
y_coords = np.repeat(np.arange(height), width).reshape(height, width)
# Calculate horizontal displacement based on depth
displacement = (baseline_distance * (depth_map_normalized * width)).astype(int)
# Apply displacement to get new coordinates for left and right images
left_coords_x = np.clip(x_coords + displacement, 0, width - 1)
right_coords_x = np.clip(x_coords - displacement, 0, width - 1)
# Index the original image with new coordinates to create the stereo pair
left_image = image[y_coords, left_coords_x]
right_image = image[y_coords, right_coords_x]
# Fill in the gaps caused by displacement with inpainting
left_image_mask = (left_image == 0).all(axis=2)
right_image_mask = (right_image == 0).all(axis=2)
left_image = cv2.inpaint(left_image, left_image_mask.astype(np.uint8) * 255, 3, cv2.INPAINT_TELEA)
right_image = cv2.inpaint(right_image, right_image_mask.astype(np.uint8) * 255, 3, cv2.INPAINT_TELEA)
return left_image, right_image
def concatenate_stereo_pair(left_image, right_image, separator_width=0, separator_color=(0, 0, 255)):
"""
Concatenates the left and right images of a stereo pair horizontally, with an optional colored separator.
Parameters:
- left_image, right_image: The left and right images to be concatenated.
- separator_width: The width of the separator to be added between the images. Default is 0 (no separator).
- separator_color: The color of the separator in BGR format. Default is blue.
Returns:
The concatenated image as a single numpy array.
"""
# Ensure the two images have the same dimensions
assert left_image.shape == right_image.shape, 'Images must be the same size.'
# Concatenate images directly if no separator is needed
if separator_width <= 0:
return np.concatenate((left_image, right_image), axis=1)
# Create the separator and concatenate with it if needed
height = left_image.shape[0]
separator = np.full((height, separator_width, 3), separator_color, dtype=np.uint8)
concatenated_image = np.concatenate((left_image, separator, right_image), axis=1)
return concatenated_image