-
Notifications
You must be signed in to change notification settings - Fork 5
/
ed25519.c
320 lines (266 loc) · 7.22 KB
/
ed25519.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/* Edwards curve operations
* Daniel Beer <dlbeer@gmail.com>, 9 Jan 2014
*
* This file is in the public domain.
*/
#include "ed25519.h"
/* Base point is (numbers wrapped):
*
* x = 151122213495354007725011514095885315114
* 54012693041857206046113283949847762202
* y = 463168356949264781694283940034751631413
* 07993866256225615783033603165251855960
*
* y is derived by transforming the original Montgomery base (u=9). x
* is the corresponding positive coordinate for the new curve equation.
* t is x*y.
*/
const struct ed25519_pt ed25519_base = {
.x = {
0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21
},
.y = {
0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66
},
.t = {
0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67
},
.z = {1, 0}
};
static const struct ed25519_pt ed25519_neutral = {
.x = {0},
.y = {1, 0},
.t = {0},
.z = {1, 0}
};
/* Conversion to and from projective coordinates */
void ed25519_project(struct ed25519_pt *p,
const uint8_t *x, const uint8_t *y)
{
f25519_copy(p->x, x);
f25519_copy(p->y, y);
f25519_load(p->z, 1);
f25519_mul__distinct(p->t, x, y);
}
void ed25519_unproject(uint8_t *x, uint8_t *y,
const struct ed25519_pt *p)
{
uint8_t z1[F25519_SIZE];
f25519_inv__distinct(z1, p->z);
f25519_mul__distinct(x, p->x, z1);
f25519_mul__distinct(y, p->y, z1);
f25519_normalize(x);
f25519_normalize(y);
}
/* Compress/uncompress points. We compress points by storing the x
* coordinate and the parity of the y coordinate.
*
* Rearranging the curve equation, we obtain explicit formulae for the
* coordinates:
*
* x = sqrt((y^2-1) / (1+dy^2))
* y = sqrt((x^2+1) / (1-dx^2))
*
* Where d = (-121665/121666), or:
*
* d = 370957059346694393431380835087545651895
* 42113879843219016388785533085940283555
*/
static const uint8_t ed25519_d[F25519_SIZE] = {
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52
};
void ed25519_pack(uint8_t *c, const uint8_t *x, const uint8_t *y)
{
uint8_t tmp[F25519_SIZE];
uint8_t parity;
f25519_copy(tmp, x);
f25519_normalize(tmp);
parity = (tmp[0] & 1) << 7;
f25519_copy(c, y);
f25519_normalize(c);
c[31] |= parity;
}
uint8_t ed25519_try_unpack(uint8_t *x, uint8_t *y, const uint8_t *comp)
{
const int parity = comp[31] >> 7;
uint8_t a[F25519_SIZE];
uint8_t b[F25519_SIZE];
uint8_t c[F25519_SIZE];
/* Unpack y */
f25519_copy(y, comp);
y[31] &= 127;
/* Compute c = y^2 */
f25519_mul__distinct(c, y, y);
/* Compute b = (1+dy^2)^-1 */
f25519_mul__distinct(b, c, ed25519_d);
f25519_add(a, b, f25519_one);
f25519_inv__distinct(b, a);
/* Compute a = y^2-1 */
f25519_sub(a, c, f25519_one);
/* Compute c = a*b = (y^2-1)/(1-dy^2) */
f25519_mul__distinct(c, a, b);
/* Compute a, b = +/-sqrt(c), if c is square */
f25519_sqrt(a, c);
f25519_neg(b, a);
/* Select one of them, based on the compressed parity bit */
f25519_select(x, a, b, (a[0] ^ parity) & 1);
/* Verify that x^2 = c */
f25519_mul__distinct(a, x, x);
f25519_normalize(a);
f25519_normalize(c);
return f25519_eq(a, c);
}
/* k = 2d */
static const uint8_t ed25519_k[F25519_SIZE] = {
0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb,
0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00,
0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19,
0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24
};
void ed25519_add(struct ed25519_pt *r,
const struct ed25519_pt *p1, const struct ed25519_pt *p2)
{
/* Explicit formulas database: add-2008-hwcd-3
*
* source 2008 Hisil--Wong--Carter--Dawson,
* http://eprint.iacr.org/2008/522, Section 3.1
* appliesto extended-1
* parameter k
* assume k = 2 d
* compute A = (Y1-X1)(Y2-X2)
* compute B = (Y1+X1)(Y2+X2)
* compute C = T1 k T2
* compute D = Z1 2 Z2
* compute E = B - A
* compute F = D - C
* compute G = D + C
* compute H = B + A
* compute X3 = E F
* compute Y3 = G H
* compute T3 = E H
* compute Z3 = F G
*/
uint8_t a[F25519_SIZE];
uint8_t b[F25519_SIZE];
uint8_t c[F25519_SIZE];
uint8_t d[F25519_SIZE];
uint8_t e[F25519_SIZE];
uint8_t f[F25519_SIZE];
uint8_t g[F25519_SIZE];
uint8_t h[F25519_SIZE];
/* A = (Y1-X1)(Y2-X2) */
f25519_sub(c, p1->y, p1->x);
f25519_sub(d, p2->y, p2->x);
f25519_mul__distinct(a, c, d);
/* B = (Y1+X1)(Y2+X2) */
f25519_add(c, p1->y, p1->x);
f25519_add(d, p2->y, p2->x);
f25519_mul__distinct(b, c, d);
/* C = T1 k T2 */
f25519_mul__distinct(d, p1->t, p2->t);
f25519_mul__distinct(c, d, ed25519_k);
/* D = Z1 2 Z2 */
f25519_mul__distinct(d, p1->z, p2->z);
f25519_add(d, d, d);
/* E = B - A */
f25519_sub(e, b, a);
/* F = D - C */
f25519_sub(f, d, c);
/* G = D + C */
f25519_add(g, d, c);
/* H = B + A */
f25519_add(h, b, a);
/* X3 = E F */
f25519_mul__distinct(r->x, e, f);
/* Y3 = G H */
f25519_mul__distinct(r->y, g, h);
/* T3 = E H */
f25519_mul__distinct(r->t, e, h);
/* Z3 = F G */
f25519_mul__distinct(r->z, f, g);
}
static void ed25519_double(struct ed25519_pt *r, const struct ed25519_pt *p)
{
/* Explicit formulas database: dbl-2008-hwcd
*
* source 2008 Hisil--Wong--Carter--Dawson,
* http://eprint.iacr.org/2008/522, Section 3.3
* compute A = X1^2
* compute B = Y1^2
* compute C = 2 Z1^2
* compute D = a A
* compute E = (X1+Y1)^2-A-B
* compute G = D + B
* compute F = G - C
* compute H = D - B
* compute X3 = E F
* compute Y3 = G H
* compute T3 = E H
* compute Z3 = F G
*/
uint8_t a[F25519_SIZE];
uint8_t b[F25519_SIZE];
uint8_t c[F25519_SIZE];
uint8_t e[F25519_SIZE];
uint8_t f[F25519_SIZE];
uint8_t g[F25519_SIZE];
uint8_t h[F25519_SIZE];
/* A = X1^2 */
f25519_mul__distinct(a, p->x, p->x);
/* B = Y1^2 */
f25519_mul__distinct(b, p->y, p->y);
/* C = 2 Z1^2 */
f25519_mul__distinct(c, p->z, p->z);
f25519_add(c, c, c);
/* D = a A (alter sign) */
/* E = (X1+Y1)^2-A-B */
f25519_add(f, p->x, p->y);
f25519_mul__distinct(e, f, f);
f25519_sub(e, e, a);
f25519_sub(e, e, b);
/* G = D + B */
f25519_sub(g, b, a);
/* F = G - C */
f25519_sub(f, g, c);
/* H = D - B */
f25519_neg(h, b);
f25519_sub(h, h, a);
/* X3 = E F */
f25519_mul__distinct(r->x, e, f);
/* Y3 = G H */
f25519_mul__distinct(r->y, g, h);
/* T3 = E H */
f25519_mul__distinct(r->t, e, h);
/* Z3 = F G */
f25519_mul__distinct(r->z, f, g);
}
void ed25519_smult(struct ed25519_pt *r_out, const struct ed25519_pt *p,
const uint8_t *e)
{
struct ed25519_pt r;
int i;
ed25519_copy(&r, &ed25519_neutral);
for (i = 255; i >= 0; i--) {
const uint8_t bit = (e[i >> 3] >> (i & 7)) & 1;
struct ed25519_pt s;
ed25519_double(&r, &r);
ed25519_add(&s, &r, p);
f25519_select(r.x, r.x, s.x, bit);
f25519_select(r.y, r.y, s.y, bit);
f25519_select(r.z, r.z, s.z, bit);
f25519_select(r.t, r.t, s.t, bit);
}
ed25519_copy(r_out, &r);
}