Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Relevant support for aten::quantile and it's tests. #28599

Open
wants to merge 21 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
f0f82e4
Implemented CPU plugin just-in-time emitter for NotEqual operation
geeky33 Jan 2, 2025
353e043
Merge branch 'openvinotoolkit:master' into master
geeky33 Jan 11, 2025
613904b
Merge branch 'openvinotoolkit:master' into master
geeky33 Jan 14, 2025
6797eec
Updated jit_eltwise_emitters.cpp
geeky33 Jan 14, 2025
25f3506
Merge branch 'openvinotoolkit:master' into master
geeky33 Jan 21, 2025
6aaea6d
Updated jit_eltwise_emitters.cpp
geeky33 Jan 21, 2025
0507f00
Updated jit_eltwise_emitters.hpp
geeky33 Jan 21, 2025
78e5b4d
Updated jit_eltwise.cpp
geeky33 Jan 21, 2025
d06a086
Merge branch 'openvinotoolkit:master' into master
geeky33 Jan 21, 2025
a55d4e8
Updated jit_eltwise_emitters.cpp
geeky33 Jan 21, 2025
5ee07f0
switching to new branch for new PR
geeky33 Jan 21, 2025
7c1f575
Added support for aten::quantile and its tests
geeky33 Jan 21, 2025
2ff9819
Added support for aten::quantile and its tests
geeky33 Jan 21, 2025
ae08bd3
Reverted some relevant changes
geeky33 Jan 21, 2025
4f15abe
Merge branch 'openvinotoolkit:master' into quantile
geeky33 Jan 22, 2025
156d2f0
Updated quantile.cpp
geeky33 Jan 22, 2025
4b8cc1c
Merge branch 'openvinotoolkit:master' into quantile
geeky33 Jan 27, 2025
96f8166
Merge branch 'openvinotoolkit:master' into quantile
geeky33 Jan 28, 2025
0381b66
Merge branch 'openvinotoolkit:master' into quantile
geeky33 Jan 30, 2025
dcd43e3
Merge branch 'openvinotoolkit:master' into quantile
geeky33 Jan 30, 2025
0c0075e
Merge branch 'openvinotoolkit:master' into quantile
geeky33 Feb 4, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 80 additions & 0 deletions src/frontends/pytorch/src/op/quantile.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
// Copyright (C) 2018-2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/convert.hpp"
#include "openvino/op/gather.hpp"
#include "openvino/op/range.hpp"
#include "openvino/op/reshape.hpp"
#include "openvino/opsets/opset10.hpp"
#include "openvino/op/multiply.hpp"
#include "openvino/op/floor.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/subtract.hpp"
#include "openvino/op/maximum.hpp"
#include "openvino/op/minimum.hpp"
#include "utils.hpp"

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

You forgot to open namespaces

using namespace ov::op;

OutputVector translate_quantile(const NodeContext& context) {
num_inputs_check(context, 2, 5);

auto input = context.get_input(0);
auto q = context.get_input(1); // Quantile(s), can be float or tensor

auto dim = context.input_is_none(2) ? -1 : context.get_input<int64_t>(2);
auto keepdim = context.input_is_none(3) ? false : context.get_input<bool>(3);
auto interpolation = context.input_is_none(4) ? "linear" : context.get_input<std::string>(4);


if (dim == -1) {
input = context.mark_node(std::make_shared<v0::Reshape>(
input, context.mark_node(std::make_shared<v0::Range>(0, input.get_shape().size(), 1)), true));
dim = 0;
}

auto sorted = context.mark_node(std::make_shared<v0::Sort>(input, dim, true)); // Ascending order

auto dim_size = input.get_shape()[dim];

auto indices = context.mark_node(std::make_shared<v0::Multiply>(q, dim_size - 1));
auto lower_indices = context.mark_node(std::make_shared<v0::Floor>(indices));
auto upper_indices = context.mark_node(std::make_shared<v1::Add>(lower_indices, 1));
auto weights = context.mark_node(std::make_shared<v1::Subtract>(indices, lower_indices));
auto lower_values = context.mark_node(std::make_shared<v1::Gather>(sorted, lower_indices, dim));
auto upper_values = context.mark_node(std::make_shared<v1::Gather>(sorted, upper_indices, dim));

Output<Node> result;
if (interpolation == "linear") {
result = context.mark_node(std::make_shared<v1::Add>(
lower_values, context.mark_node(std::make_shared<v1::Multiply>(weights, upper_values))));
} else if (interpolation == "lower") {
result = lower_values;
} else if (interpolation == "higher") {
result = upper_values;
} else if (interpolation == "nearest") {
auto nearest_indices = context.mark_node(std::make_shared<v0::Round>(indices));
result = context.mark_node(std::make_shared<v1::Gather>(sorted, nearest_indices, dim));
} else if (interpolation == "midpoint") {
result = context.mark_node(std::make_shared<v1::Add>(
lower_values, context.mark_node(std::make_shared<v1::Multiply>(
context.mark_node(std::make_shared<v0::Constant>(element::f32, Shape{}, 0.5)),
context.mark_node(std::make_shared<v1::Subtract>(upper_values, lower_values))))));
} else {
throw std::runtime_error("Unsupported interpolation method: " + interpolation);
}
if (!keepdim) {
auto reshape_dims = input.get_shape();
reshape_dims.erase(reshape_dims.begin() + dim);
result = context.mark_node(std::make_shared<v0::Reshape>(result, reshape_dims, true));
}

return {result};
}

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,7 @@ OP_CONVERTER(translate_quantized_add);
OP_CONVERTER(translate_quantized_add_relu);
OP_CONVERTER(translate_quantized_hardswish);
OP_CONVERTER(translate_quantized_mul);
OP_CONVERTER(translate_quantile);
OP_CONVERTER(translate_range_length);
OP_CONVERTER(translate_rand);
OP_CONVERTER(translate_randn);
Expand Down Expand Up @@ -747,6 +748,7 @@ const std::unordered_map<std::string, CreatorFunction> get_supported_ops_ts() {
{"quantized::hardswish", op::translate_quantized_hardswish},
{"quantized::linear", op::translate_quantized_linear},
{"quantized::mul", op::translate_quantized_mul},
{"quantized::relu", op::translate_quantile},
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
{"quantized::relu", op::translate_quantile},
{"aten::quantile", op::translate_quantile},

{"torchvision::deform_conv2d", op::translate_deform_conv},
{"torchvision::nms", op::translate_nms},
{"torchvision::roi_align", op::translate_roi_align},
Expand Down
36 changes: 36 additions & 0 deletions tests/layer_tests/pytorch_tests/test_quantile.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import numpy as np
import torch
from pytorch_layer_test_class import PytorchLayerTest


class TestQuantile(PytorchLayerTest):
def _prepare_input(self):
input_tensor = np.random.randn(1, 3, 224, 224).astype(np.float32)
quantile = np.array(0.5, dtype=np.float32)
return (input_tensor, quantile)

def create_model(self, dim=None, keepdim=False):
class aten_quantile(torch.nn.Module):
def __init__(self, dim, keepdim):
super(aten_quantile, self).__init__()
self.dim = dim
self.keepdim = keepdim

def forward(self, x, q):
return torch.quantile(x, q, dim=self.dim, keepdim=self.keepdim)

ref_net = None

return aten_quantile(dim, keepdim), ref_net, "aten::quantile"

@pytest.mark.parametrize("dim", [None, 0, 1, 2, 3, -1, -2, -3])
@pytest.mark.parametrize("keepdim", [True, False])
@pytest.mark.nightly
@pytest.mark.precommit
def test_quantile(self, dim, keepdim, ie_device, precision, ir_version):
self._test(*self.create_model(dim, keepdim), ie_device, precision, ir_version)

Loading